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1. INTRODUCTION

Omega '1 23 4 is a radio aid to navigation having very long range that

operates in the Very Low Frequency (VLF) part of the radio spectrum.

Signal strength and the repeatability of times of arrival are such that eight

closely-synchronized transmitters can provide adequate signals to the

entire surface of the earth with a satisfactory arooumt of overlapping.

Measurements are made of the phases of received signals, usually taken in

pairs to establish hyperbolic lines of position. These lines are stable and

predictable enough to yield positions with errors of only a mile or two.

It is the intent of this paper to discuss forward-looking propagational

aspects of Omega, not the system as a whole. Except when required for

arguments herein, introductory material and matters such as design of

equipment or operational experience must be sought in some of the references

cited, or elsewhere.

It is an unfortunate fact that, even after fifteen years of Omega

experimentation and operation, the consistency of measurements made at a

given point still exceeds the precision with which values at that point can be

predicted from propagational theory. It seems, therefore, that efforts to

understand the facts of radio wave propagation in the very-low frequencies

ought to be continued. This paper summarizes certain of these facts that

have become clear in the last few years of the writer's research on wave

propagation in support of the Omega system.

These facts and ideas constitute a set of suggestions that may, in

several ways, improve the accuracy, reliability or convenience of Omega.

Since the writer will no longer be in a position to teach these and similar

JI



-2- r

concepts, this paper is an effort to leave these matters in an ordered way

that may help others in carrying this kind of study into the future.

2. COMPOSITE SIGNALS

Many of the ideas and observations to be reported can most easily be

expressed in the nomenclature of composite signals. 5, 6 This concept will

therefore be explained first.

Ormega .ransnritting-station synchronization is achieved, within very

close limits, ty insuring that (although they are actually radiated sequentially)

all antenna currents at all stations at all frequencies pass through zero in

the positive sense at the same selected instants of atomic time. Thus the

time zero of all radiated signals, including all beats between different

frequencies, is absolute.

Under this condition the phase of a difierence-frequency between two

Omega carrier frequencies from a single station, received at a distant

point, may be defined as

C2-1 02 C- ¢1 (1)

where

02-1 =total phase change along the transmission path at the

difference frequency

0Z = the same at the higher carrier frequency

and

1 = the same at the lower carrier frequency.

For each phase shift

S= 2/T fd/v = 2fT (Z)

~;
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where

f = frequency

d = distance

V = velocity of propagation

and

T = time of propagation along the path from transmitter to receiver.

Substitution converts Eq. (1) into time units which the writer finds it (
most convenient to discuss, giving

f2T - fIT I
22 -1 1 f (3)

where the subscripts are as in Eq. (1).

The most widely-separated Omega frequencies are 10. 2 and 13.6 kHz.

For this pair of frequencies, Eq. (3) becomes

T 2-1 z 4T 2 - 3T 1  (4)
~/

or, in terms of actual frequencies in kiloherts,

T 3. 4 = 4T 13.6 - 3T 1 0.2 (5)

It should be noted that the propagation times for the two carrier

frequencies correspond to phase velocities in the "wave guide" formed by

the space between the surface of the earth and the base of the ionosphere,

while the difference frequency travels at the group velocity in the waveguide.

The most convenient time unit for Omega purposes, is the period of 10. 2
kHz, which is sometimes divided by 100 to give centicycles (or Cecs) of
10. 2 kHz. The latter unit is therefore about 0. 98 microsecond.

mo



At the Omega frequencies, the daytime phase velocities are slightly greater

than the velocity of light. The phase velocities are a little less than the

velocity of light at night. The group velocities are nearly 1% slower than the

phase velocities.

Various relations between the phase and group velocities can be

explored, and fruitfully used, by writing a general expression for composite

signals of which Eq. (5) is a special case. The simplest equation of this f

kind is, in terms of a mixing parameter m ,

T =mT2 - (m-l)T 1  (6)

or, alternatively and often more usefully,

T c = T1 + m(T 2 -T 1 ) (7)

where Tc is the propagation time of a composite signal and T 1 and T 2

have been defined above.

When m has the value f 2 /(f 2 - f) , the composite time Tc becomes

the propagation time for the difference frequency (f. - fI). In the case of

primary interest, where f 1 and f2 are 10. 2 and 13.6 kHz, fZ/(f2 -f) 2 4,

as in Eq. (5).

There are only three values of m for which the composite propagation

time has simple values, as shown in Table I.

Theoretically, analytically, or instrumentally, m can assume any

value. Except for the cases in Table I, all propagation times are a compound,

or composite, of the phase and group times. There seem, however, to be

ordy two regions of m where the composite signals are of especial interest.

These can be located experimentally or, to a fair approximation, analytically.

mem,.o! t
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TABLE I

Singular Values of the Composite Propagation Time T
C

Generalized Values Values for the Omega Frequencies Cited

m T m T c

0 T 1  0 T10.2

1 T2  1 T 1 3 .6

f 2/(f 2 -f) T2 1  43.4

3. COMPOSITE SIGNALS TO MINIMIZE STANDARD DEVIATION

The first of these regions can be found by assuming that a single mode

of propagation exists in the earth-ionosphere waveguide. In this waveguide

the mean proportional between the phase and group velocities or, to a

sufficient approximation, the mean of the two velocities should be a constant

equal, presumably, tc the velocity of light. This assumption can be inverted,

by Eq. (Z), to give

T = P ( 8)
c Z

where T and T are generalized phase and group times of propagation,P g

respectively.

Because there is a significant amount of digpersion in the waveguide,

we may adopt the mean of the phase times at f1 and fZ as the generalized

phase time Tp , by saying

p
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T 1 + T2
T p - Z

The group time is, of course, the time for the difference frequency,

which has been defined in Eq. (3) as

f2T - fT1

T f - f2 I1 (10)

Substitution of the values from Eqs. (9) and (10) into Eq. (8) yields

(3f 2 -f 1 )T 2 - (3f, -f Z ) T (

c 4(f 2 - f1 )

If we define

3f 2- fl1
m - ___ (12)o 4(f 2 - fl1)

it turne out that

3f1 - f2
4 f)= m -1i (13)4(f 2- fl 1 "o

and Eq. (11) reduces to

T c = moT 2 - (m o - I)T 1  (14)

which is a special case of Eq. (6).

Using the value of m 0 defined in Eq. (12), which is equal to 9/4

when fl and f 2 are taken as 10. 2 and 13.6 kHz, we may expect to

observe a composite propagation time that is nearly invariant despite

changes of height or conductivity of the surfaces in the earth-ionosphere

,J
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waveguide. Experimentally we find that there is much truth in the second

part of this statement, but there is a residual change in the time of

propagation between day and night as the height of the reflecting layer

changes.

An explanation for this diurnal change in the propagation time is as

follows. The optimum composite signal, with m = mo, presumably

travels at the velocity of light along the IIaxis" of the waveguide. In a

plane parallel waveguide the axis would be at half the height and the length

of the axis would equal the length of the waveguide. Between the curved

earth and curved ionosphere, however, the "axis" is at about 3/8 of the

height* of the layer while we can only measure our propagation distances

along the surface of the earth as the layer height is not accurately known.

It follows that when the layer height increases at night the composite

signal (although still traveling at the same velocity) must traverse a

greater distance so that the time of propagation is somewhat greater.

The first four figures illustrate this especially interesting composite

signal, with m equal to the m0 of Eq. (1Z). Figure 1 shows the behavior

of the propagation time during a large Sudden Ionospheric Disturbance

(SID), associated with a solar flare, that began at about 1708 GMT on

8 July 1968. The time taken by the signals to travel from Hawaii to

Cambridge is expressed in periods of the lowest Omega frequency, 10. 2

kHz. This unit is equal to 1/10200 second or 98+ microseconds. At about

*The factor 3/8 is related to the average height at which rays travel by

reflection between the earth and the reflecting layer. In mode theory,
it is the height at which the mode resonance angles cross in the waveguide.
This factor is by no means an exact constant, but it should lie between
1/3 and 1/2 of the layer height.

Ma
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283-
Hawai i received at Cambridge 8 July 1968

N 282- Normal day in July

-281-

n

C

E

0

'z27
0~

Greenwich Mean Time

Figure .1: A Large Sudden Ionospheric Disturbance at Various Values of m.
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17Z5 GMT the 10. 2 kHz signal had a time of propagation 100 microseconds

less than it had had at, say, 1705. The abnormal ionizing energy of the

solar flare, which depressed the ionized layer, gradually declined, but its

effect was noticeable for almost four hours. At 13. 6 kHz the effect was

similar but considerably smaller, while at 3.4 kHz--the difference

frequency .- the effect was similar but inverted in sense. The approximate

cancellation of the effect of the SID when m = 9/4 is of primary

importance. *

An example of another propagational anomaly, from a different

primary cause, is shown in Fig. 2. This diagram shows the first two

days of an average "Polar Cap Anomaly" (PCA) caused by corpuscular

bombardment of the ionosphere by protons, and perhaps other charged

particles, shot out in a solar eruption. These heavy ions penetrate to the

base of the ionosphere chiefly near the polar regions where the horizontal

component of the earth's magnetic field is small. Events of this kind often

last for a week or more. This one began near 10h GMT on 9 June 1968 and

declined in magnitude after about 40 hours. As in Fig. 1, the effect is seen

to be greatest at 10. Z kHz, to reverse at 3.4 kHz, and to approximately

vanish when m = 9/4.

Figures 1 and 2 illustrate the effects of the two primary kinds of

propagational anomalies in the VLF region of the radio spectrum. Almost

all recognizable anomalies of either kind have behaved in the same general

*It should be admitted that although a continuous 10. 2 kHz record was
available at this time, the 13.6 kHz record, upon which the other curves
depend, was available only in hourly samples. Figure 1 therefore draws
upon art as well as observation.

9
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191
Norway received at Cambridge 8-11 June 1968

Normal in June

_li 190 m 9 4 

.

c5

0

~ ~ ~ ~ ~ ~ ~ ~ ~ .._.._... . . . .s - -. . .. , . .

E

188

0

a_ 10.2 kHz

187 I I I I
12 GMT 00 12w0 10 00 12 00

8 June 9 June 10 June 11 June 1968
Greenwich Date and Time

Figure 2: A Polar Cap Anomaly at Various Values of m
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way. The degree of cancellation when m = 9/4 varies somewhat, and at

times a very rapid commencement of an SID may affect the two frequencies

at different rates so that there is a short transient effect before the

compositc signals settle into a steady state. Sometimes such a transient

effect can be attributed to instrumental causes, such as a difference in

dynamic characteristics or in signal-to-noise ratio between the two radio-

frequency channels.

It is reasonable to assume that the normal fluctuations in the time of

arrival of a VLF signal may consist in part of unrecognized anomalistic

propagation. If this be true or if, for any reason, there should be a high

degree of correlation between the fluctuations at neighboring frequencies,

the theory of composite signals outlined above predicts that the standard

deviation should be at a minimum when m = m . Another way of making

this statement is to say that this composite signal should travel at a

velocity near that of light and should be less affected by changes in the

conductivity of the waveguide surfaces than either the phase or the group

velocity.

Figure 3 shows that at least the longer-distance signals in Omega

obey this rule. Here the ordinate is m , and it should be remembered

that the two carrier frequencies of 10. 2 and 13. 6 kHz are represented by

m = 0 and m = 1 , while m = 4 corresponds to the difference frequency.

The standard deviations of Fig. 3 are for the month of December, 1970,

and are root-mean-square values for all of the Z4 hours in the day, taken

separately. Similar curves for the summer exhibit a somewhat smaller

standard deviation, but are otherwise much like Fig. 3. The reasons for

the minimum near m = 1 for the Trinidad signal will be discussed later,

as will some of the details of diurnal behavior.

J
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We have seen that very large variations in the time of arrival are

better compensated by the composite-signal treatment than are long-term

standard deviations. This seems to be because there is higher correlation

between fluctuations when they are large. This may be equivalent to saying

that there is an uncorrelated phase noise (principally due to instrumental

uncertainties and to actual atmospheric noise) to which there are added

highly-correlated propagational fluctuations. This effect is shown in

Fig. 4, where standard deviations at m = 9/4 are plotted against the

corresponding standard deviations at 10. 2 kHz. These data were taken by

pairs of stations, and the deviations are somewhat larger than those for

the "worst" station of the pair. Each point in Fig. 4 shows the standard

deviations observed at a given hour of the day during a calendar month in

the period between late 1967 and the end of 1972. The graphs for 03 and 06

hours GMT are chosen as near midnight in the area including the trans-

mitters and the receiver, while the 15 and 18 hour graphs represent

conditions near noon. Two points are worthy of notice: (1) the composite

deviations at night are about twice those by day, and (2) the composite

deviations show no great sign of increasing under those conditions that

produce carrier-frequency deviations much larger than normal.

These matters will be more fully discussed when we come to the

study of correlation between signals. Before that, however, it will be well

to derive the second important value of the parameter m.

-he
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4. COMPOSITE SIGNALS TO MINIMIZE DIURNAL VARIATION

To find a composite propagation time that is, as nearly as possible,

diurnally invariant, we may begin by observing that there is in fact an

inversion as m increases, because the phase time is smaller in the day-

time than at night while the group time is less at night than by day. The

value of m that equates day and night propagation times can be derived,

7following Watt and Croghan, as follows. The velocity of the composite

signal is defined as intermediate between phase and group velocities by

saying

v = Vp(1-P) + Pv (15)

where P is a proportioning parameter.

From Watt 8 this velocity can also be defined, in an approximation to

the mode-theory velocity, as

S 1- ha _ (P -  (2n + + 0-" (16)
v a ' 2) '' 9 4 fh

where

v° = velocity of light

h' = height of ray crossings in the waveguide

a = radius of the earth

n = mode number (i in this case)

I= phase shift at reflection at the surface of th- earth

0i = phase shift at reflection at the ionosphere

f = frequency

and I = height of the reflecting layer.
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Watt and Croghan then take

h -- 0. 30 h (a different estimation of the value 3/8 suggested
in an earlier footnote)

Og = 0

although all of these values are approximate and are not independent of h.

With these values Eq. (16) reduces to

vV 2 h - 2

C 0.30h (_ v.h
1 a --- (17)

0 16f

Differentiating with respect to h and setting the result equal to zero

produces

" = 0.5 + 4.21024 f2 h 3  (18)

Taking the day and night heights as 70 and 90 kilometers and the frequencies

as 10. Z and 13.6 kHz leads to a mean value of h as 80 km and of f as

11. 9 kHz. P is then found to be 0.8. Since

ff2 p  (19)
fz-fl

Watt and Croghan's solution suggests that a moderately uniform velocity

should be found for this pair of frequencies when m = 3. 2.

Bj~ntegaard 9 has perform( i much the same analysis by graphical

methods working from Wait's curves. 14 He finds the value of m that

leads to minimum day-to-night variation to be 3. 35.

At this point in our discussion it must be said that a true assessment

of the value of m yielding minimum diurnal variation must take account of

.- J
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all hours of the day, because (on a transrission path spanning many hours

of longitude) there may be more hours of suirise and sunset conditions

than there are of full night or full day. It is, nevertheless, advantageous

to continue the discussion of day versus night conditions a little longer.

A rough determination of what we may now call m, , the value of m

at which diurnal variation is a minimum, can be made in terms of the

height of the "Itrapezoid'" representing the change in time of arrival of a

signal between day and night. If this height be measured at the two

frequencies fI and f 2 and if, for convenience, it be called AT, we see

that
AT1

ATI-AT 

(0

where each AT is proportional to (c/vnight - C/Vday) with c the velocity

of light. This derivation requires some averaging of daytime levels, which

usually vary inversely with the altitude of the sun, and takes no account of

sunrise and sunset periods. It does, however, give an easy experimental

determination that is ar oximately correct. Three examples of reciporcal-

velocity values permitting this kind of solution are shown in Table lI.

The quantities tabulated are values of c/v (which require only to be
I

multiplied by a distance, expressed as the time for a theoretical signal to

traverse the geodesic at the velocity of light, to become propagation times).

Values and certain differences between them are given in the table for the

three sets described as follows:

(A) Transcribed from Naval Research Laboratory Report No. 6663. 10

This -eport suggests that the values are theoretical ones derived from Wait.

Internal evidence indicates -hat there is perhaps some admixture of

experimental evidence in the values cited.
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TABLE H

Various Estimates of Reciprocal Velocity

c/v-2 c/v I

13.6 kHz 10.2 kHz

(A) from NRL Report 6663:

Night 1.00240 1. 00040 0.00200
Day 0. 99967 0. 99661 0. 00306

Night-Day 0. 00273 0.00379 3.57 1. 0075

(B) from FAA experimental data:

Night 1.00223 1.00018 0.00205
Day 0.99978 0.99667 0.00311

Night-Day 0. 00245 0. 00351 3.31 1. 0070

(C) Nominal:

Night 1.00250 1.00040 0.00210
Day 1. 00035 0. 99730 0. 00305

Night-Day 0.00215 0.00310 3.26 1.00724

Note: c/v - c/v I + m(c/v 2 - c/v)

(B) Experimental data from a survey conducted by Pickard and

Burns, Inc., for the Federal Aviation Administration and privately

conumunicated to the writer. The data cover observations of diurnal

variations of either two or three Omega pairs over one or two days at each

of seventeen locations, ranging from Argentina to Alaska and from New-

foundland to Alberta. The data are somewhat doubtful, as the equipment

used did not resist noise impulses as well as it should have. Values of m

---
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for the individual pairs lay between 1. 5 and 5. 0, and were weighted in a

complex way to derive the n±mbers cited in Table I (B).

(C) Nominal values adopted by the writer after consideration of (A)

and (B) above and many other blocks of data. These nominal values will

be used from time to time below.

Figures 5 and 6 illustrate a way of examining mI 1 . In each diagram

an "Im-line" is drawn through the mean values of time at 10.2 (m= 0) and

13.6 kHz (m= 1) for each of the 24 hours of the day for a chosen group of

dates. Such groups of dates are often taken as half-months, because it is

weli to average many days without including too much seasonal change in

the times of sunrise and sunset. Figure 5 shows the propagation time for

the signals travelling from Hawaii to Cambridge in May, 1971. The grouping

of the lines when m is somewhat greater than 3 is clearly marked. It is

also interesting to note that a tendency to group in the neighborhood of

m= 9/4 can be seen, principally in the daytime hours (those lines that are

lower at the left side of the diagram) but also to some extent at night.

Figure 6 is entirely similar to Fig. 5, except that it shows time

differences for the pair Norway-Hawaii as seen at Cambridge in February,

1969. Because the two transmitters are separated by nearly 12 hours in

longitude, the positive diurnal variations from Norway tend to coincide with

the negative diurnal variations from Hawaii. The relative amplitude of the

variations in Fig. 6 is therefore magnified in comparison with Fig. 5,

although the time difference itself (and consequently the mean slope of the

lines in Fig. 6) is smaller. The grouping near m = 3. 3 is, however,

still conspicuous.

A simpler but perhaps less instructive way of exhibiting these effects

is to plot standard deviation against m. Figure 7 shows such a diagram for

..-- ,.J , a ,' ' " ' i , t 'l ,"~ l ' ¢ P !' :I ' 1
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the rms of the three lopg-distance pairs observable at Cambridge in June

1968 and December 1970. Minima in the neighborhood of m = 9/4 and

m = 3 are clearly shown. Two important conclusions may be drawn from

Fig. 7:

(1) When using diurnal predictions for navigational purposes, as

indicated by the lower pair of curves, the standard deviation near m = 9/4

is about half of that at m= 0 (10. 2 kHz).

(Z) Without diurnal compensation (the upper pair of curves) the

standard deviation near m = 3 is about the same as that for m = 0 with

compensation.

Neither of these statements takes any account of the errors of

prediction that are an important, or even dominant, factor in determining

navigational accuracy. While these will be discussed below, it is perhaps

fair to say here that prediction errors seem to behave in much the same

way as propagational fluctuations, so that the statements above remain

reasonably accurate.

Figure 8 is an effort to show why an m near 3.0 is, for some

purposes, to be preferred to one near 3. 3. The ordinate here is the

velocity of light divided by the velocity of the signal, or relative time. This

diagram shows lines at the nominal values from Table II, each surrounded

by a hatched area purporting to indicate the typical standard deviation.

Since the standard deviation increases markedly above m = 9/4, the total

spread is least when m is near 3.0, even though the nominal lines actually

cross near m = 3.3. This means that, if one wishes to operate without the

need for applying diurnal corrections to the observed data (except as

necessary for purposes of lane identification, as is discussed below) a value

of m at or near 3. 0 is probably best.
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5. A NOTE ON DETERMINATION OF THE ZERO OF OMEGA TIME I

To validate occasional examples of the time of arrival of the signals

from a single Omega station (which has already occurred in the cases of

Fig. 1 and Fig. 5) it is necessary to establish the difference between the

time scale of the Omega stations and that of the local clock at the receiving

point. This is done by comparing the 24-hour means of various times of
11

arrival with the corresponding means predicted by the U. S. Navy. A

determination of clock error can be made each day, for example, in terms

of the 10. 2 kHz signal from Trinidad. The precision of this determination

can be estimated by intercomparison with similar measurements for other

stations and at other frequencies. An example of such data for a period of

ten days in October, 1972, is shown in Table III. This period was chosen

as one in which there were fairly large discrepancies between stations

while the local clock showed good consistency.

TABLE III

Mean Cambridge Clock Errors and Standard Deviations
for 15-24 October, 1972

in Centicycles of 10. 2 kHz

Value of m
With Respect

to 0 (10. 2 kHz) 1 (13.6 kHz) 9/4

Norway 32.4 ± 3.9 Z8.3 _ 2.3 22.8* 0.9

Trinidad 19. 0 ± 1. 0 19.1 1.2 18.9 - 2.0

Hawaii 26.3 ± 1. 3 25.4 *1. 1 24.7 *1.2
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The large differences for the various measurements on Norway are

caused primarily by vagaries (and difficulties in prediction) in propagation

in the arctic region. An example of this was shown above in Fig. 2. The

standard deviations for the carrier frequencies are correspondingly large.

Trinidad, on the other hand, shows excellent agrt.ement between the mean

values, and the carrier-frequency standard deviations are smaller than that

for the composite signal. Hawaii exhibits both good agreement and uniform

standard deviations.

It is the writer's custom to determine the mean clock error each day

for the carrier frequencies using all stations except Norway, and also to

measure the means for all stations for .he 9/4 composite signal. These

two mean determinations for the block of data cited in Table UI are:

Carrier frequencies Mean 22. 5 Cecs Standard deviation 2. 1 Cecs
(excluding Norway)

Composite signals Mean 22. 1 Cecs Standard deviation 1. 4 Cecs
(including Norway)

The size of these last standard deviations indicates that the close

agreement between the two determinations of the mean is fortuitous.

Experience over several years, however, shows that these two daily

determinations usually agree to two or three centicycles (of 10. 2 kHz) and

that the mean of the two determinations is probably accurate to at least the

same order.

6. NOISE

Before further discussion of the uses of composite signals, it is

necessary to examine the effects of noise. In a phase-measuring system,

noise may be regarded as any temporary disturbance of an observed phase.

Cal A
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Such disturbances may be produced by actual atmospheric noise interfering

with the desired signal, by fluctuations in propagation time that have no

known correlation in time or frequency, or by instrumental uncertainties

that vary from time to time.

Atmospheric noise is the first and most serious problem. In the

Omega spectrum one may be so unfortunate as to "hear" all of the hundred

lightning flashes that occur each second, on the average, somewhere on

earth. These noise impulses are very large, as thousands of amperes flow

in a miles-long column of ionized air and radiate energy much more power-

fully and efficiently than do any man-made transmitting antennas. The

current transients are very short, building up in a few microseconds and

dying in a somewhat underdamped way in a few hundred microseconds.

They therefore radiate relatively simple pulses of short duration in

comparison to the spaces between them. The radiation covers a wide band

of frequencies, but is most intense near five kilohertz. Because this

frequency is poorly propagated in the earth-ionosphere waveguide, the

impulse at a considerable distance settles into an oscillating pulse of non-

uniform frequency and a few cycles duration, having a quasi-period

controlled by the interval of 50-100 microseconds typical of the time delay

between successive multiple reflections in the propagation medium.

This lightning impulse, as received, has its maximum energy near

10-12 kHz, or exactly in the Omega frequency band. Field strengths

produced at the receiving antenna may be of any size up to many volts per

meter, depending upon the distance from the lightning source. Because

desired Omega signals often have a field strength no greater than 10-100

jiv/m, no linear receiver having enough gain to utilize the Omega signals

could avoid being overloaded by the noise impulses. This overloading may

--
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saturate an iron-cored inductor in a tuned circuit, changing its inductance

and therefore its phase shift, or it may cause unwanted rectification in

amplifiers, creating spurious transient biases that react upon the observed

phase of a signal. These saturation effects must last longer than the

reciprocal of the bandwidth of the circuit being saturated, and may last

many times longer, depending upon the time constants of the circuits and

the degree of overloading.

The cures for this kind of behavior are either to limit the amplitude

that can be produced in a circuit, or to close a gate when a noise imp,.lse

is observed so that the impulse cannot reach a sensitive part of the

receiver or measuring circuitry. By one of these techniques, the measure-

ment of the phase of a signal can be restricted to those times when the

signal exceeds the instantaneous noise level. With hard limiting there is

always an output of full amplitude whether it be due to signal or noise or

a combination of the two. The noise components, however, have no stable

phase and, in a phase detector, approach zero output with increasing

integration time. Gating, on the other hand, should remove all output from

a phase detector during the noisy intervals and therefore ought to be

preferred. This improvement can be achieved in a perfect digital system,

no doubt, but the writer has never managed to produce an analog gating

system that was preferable to a good hard-limiting system, partly because

it is difficult to establish a gate threshold that is not considerably above

the signal level.

The requirements for a good receiver channel are easy to state, but

are not often realized without great care and effort. The most important

statement is that between limiters the receiver should be absolutely linear.

Selective circuits must not have phase characteristics that change with the

V
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amplitude of a signal or with signal-to-noise ratio. Limiters themselves

must have essentially infinite bandwidth and be accurately symmetrical.

"Excess" selectivity must be provided so that the effective bandwidth is not

greatly different for very weak signals or heavily-limited ones.

In practice, these criteria require that not more than 20-25 db of

gain be achieved between limiters, and less should be used in the later

stages of the receiver. The writer usually has four such distributed

limiters in a fixed-station receiver designed to operate viwt a large antenna

and relatively low overall gain. Mactaggart 1 2 has described a very care-

fully-designed aircraft receiver which uses seven limiters in each radio-

frequency channel.

One of the reasons for this lecture on relatively obvious matters is

that the writer has generally found that they are not understood. Only one

out of many receivers brought to him for examination has been satisfactory

in these various respects. A more immediate reason for introducing this

discussion at this point is that the behavior of a difference frequency or one

of the recommended composite signals will not be satisfactory unless the

noise rejection in the receiver is excellent.

The reason for the requirement for greater rejection of noise for

composite signals than for carrier-frequency signals can be found from

Eq. (Z2) (to be derived later), by setting the correlation coefficient between

frequencies to zero. The results of this solution are shown in Fig. 9, for

three values of a13. 6/a10. 2 The minima between m = 0. 5 and

m = 0. 7 indicate the obvious fact that the smallest error from the un-

correlated signals will be attained by using their average, properly weighted.

For values of m greater than unity, the curves of Fig. 9 become quite

linear, and the values of a c/o. are seen to be approximately equal to
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m. This means that the effects of noise upon phase errors will be about

four times as great at the difference frequency 3. 4 kHz, where m = 4,

as at the carrier frequencies at m = 0 and m = 1.

Figure 9 also helps to explain the location of the minimum of

standard deviation for the Trinidad signal at Cambridge, which was near

m = I for the example shown in Fig. 3. In the case of this signal, the

propagational fluctuations are usually small and the noise contributions

add a relatively large quantity of uncorrelated error components. Another

way of describing this effect is to say that if noise be added to perfectly-

correlated signals that show a minimum of standard deviation at, say,

m = 9/4, the vertex of the parabola relating standard deviation to m must

move toward higher standard deviation and toward lower m, until the

condition of Fig. 9 is approached as a limit.

Fortunately, as will be shown later, the uncorrelated component of

propagational phase fluctuations appears to be very small. It follows that

good measurements of the composite signals may be made if the effects of

atmospheric noise (and of instrumental uncertainties) have been reduced to

a minimum. Part of this reduction can be achieved through integration, but

the first and most important steps must be taken through careful design of

receiver channels.

7. AMBIGUITY

It is not too early in this discussion to issue a serious warning: it is

an inconvenient fact that thoughtless use of composite signals can make lane

identification (the choice of a whole number of periods) impossible. This

subject requires careful explanation.

The utility of Omega, or any other VLF aid to navigation, has its

11
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cornerstone in the observed fact that the time of transit of a low-frequency

signal has good day-to-day repeatability, although there is a characteristic

day-to-night variation that is larger than we might like. It is conceivable

that, by perfectly continuous signal tracking, a navigation aid might be made

useful if the long-term standard deviation (at a given hour of the day) were

as large as a carrier period. The prospect, however, would be discouraging,

especially if the quasi-period of variations in time were short.

Fortunately, at the lowest frequency used in Omega, the observed

standard deviation of the time difference between the two signals of a pair is

typically about 1/10 period. This ratio offers a good probability that if a

"cycle count" should be lost it can be recovered in one way or another. The

possible ways are determined primarily by the wavelength, which is about 16

nautical miles, or 30 kilometers, at the frequency cited. Since a navigator

can move directly toward one station of a pair while moving away from the

other, the phase difference between the signals of the pair can change by 360

degrees for a distance of 1/2 wavelength. Thus the minimum ambiguity at

10. 2 kHz is about 15 km or 8 nautical miles. This distance is large enough for

a celestial fix, for example, to provide an external way of resolving the

Omega ambiguity.

The reason for tha multiple ambiguities in Omega is that only the

relative phase of a signal is measured while it is necessary, or at least

advisable, to transmit a burst of signal lasting some 10, 000 carrier periods.

In Loran A, by contrast, a single relatively-short pulse is radiated at a very

low repetition frequency, so that the sequence of signals from a pair of

stations is interlaced, with master and slave pulses always arriving

alternately at the receiver. There is thus no ambiguity, except for the

trivial question of which side of the baseline the navigator is on.
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Loran C is a system intermediate between Loran A and Omega. Here

accuracy is increased by measuring the relative phases of carrier-frequency

cycles. This is done, however, with a large relative- bandwidth so that the

envelope of each pulse rises to maximum amplitude in about eight or 10

car-ier periods. It is thus possible to examine the shape of the pulse

envelope and identify a particular carrier cycle as the one occurring at the

point of inflection of the envelope, or by some other similar definition. This

process is facilitated by using very high-powered transmitters so that the

pulse shapes are not too seriously affected by atmospheric noise.

Omega operates at a frequency about ten times lower than that of

Loran C, but unfortunately is constrained by technical limitations (chiefly

the very low radiation resistance attainable in antennas at the Omega

frequencies) to use bandwidths many times narrower than those found useful

for Loran C. This means that each Omega "pulse" rises to maximum in

100 to Z00 carrier periods or at least 10 to 15 milliseconds. This length of

rise time is common to all VLF transmissions. Its meaning for navigational

purposes is illustrated by recalling the writer's fascinaticn with the idea that

the seconds pulses radiated qome years ago from the Naval radio Station in

the Panama Canal Zone had a rise time greater than the transit time from
'4_

Panama, so that each beginning could be detected at Cambridge before the

transmitting antenna current had reached full amplitude in Panama.

Because the Omega transmitter power level is a hundred times less

than that of Loran C, while the atmospheric noise is greater and signals

are used at much greater distances, it is hopeless to think of lane

identification through use of the "pulse" envelope, although this method

may be of some use in coarse determination of approximate position.

The internal method for lane (or cycle) identification in Omega 1 is the
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use of several frequencies so spaced that the beats between them are at sub-

multiples of the carrier frequencies. Unfortunately the precision of phase LI

measurement is so poor, because of propagational uncertainties and poor

signal-to-noise ratios at typical distances, that this process must be carried

out in a number of stages. The first step, and the most difficult one, is the

selection of one out o1 each successive three periods of 10. 2 kHz, by measuring

the phase of 3.4 kHz signal obtained by beating the 10. 2 kHz carrier with a

second carrier at 13. 6 kHz. * The difficulty in this process stems primarily

from the variations in dispersion. If one assumes, as shown in Fig. 7; that

the typical standard deviation at 10. 2 kHz (m=0) is 10 centicycles while the

standard deviation at 3.4 kHz (m=4) is 15 centicycles of 10. 2 kHz, he might

deduce that the standard deviation of the difference between 10. 2 and 3. 4 kHz

would be about 18 canticycles of 10. 2 kHz. As this value is reasonably small

in comparison with the critical limit of 50 centicycles or 1/2 period of 10. 2 kHz,

a fair reliability would be falsely deduced. The error in this estimate lies in

the neglect of a negative correlation between the times (or phases) measured at

these two frequencies. The effects of anomalous propagation show a distinct

tendency to be -7/9 as large at 3.4 kHz as at 10.2 kHz, and diurnal effects also

show a negative correlation of different ratio. The positive identification of a
J

10. 2 kHz period in terms of 3.4 kHz can therefore not always be guaranteed

when propagational conditions are difficult.

Frequency differences at and below 3400 Hz (of which only 1133 1/3

Hz is transmitted at present) all travel at the group velocity of the medium

rather than the phase velocity appropriate to the carriers. Although there

are minor differences between frequencies due to non-linearity of the

This discussion frequently takes the form of speaking of a single signal. In
practice, however, measurements are usually made of the differences between
signals of a pair. This makes no difference at the core of the analysis.
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dispersion, these differences are so small as to be relatively unimportant.

In summary, it now appears that lane identification from lower frequencies

up to 3400 Hz will show considerably greater reliability than will

identification of 10. Z kHz or the other carrier frequencies. This difference

may be of operational significance for some purposes, and it will be further

examined in another section of this paper.

The reason for the warning with which this section begins is as

follows. The use of a composite signal, as shown in Eq. (6) among others,

involves taking the difference between quantities each of which is a time

multiplied by a factor ordinarily greater than unity. The potentially-

unfortunate results are best shown by an example. Suppose the frequencies

to be 10.2 and 13.6 kHz. For minimum standard deviation Eq. (12) shows

that m should be 9/4, and the multiplying factors for Eq. (6) are 2. 25

for T136 and 1.25 for T 1 0 2

The 10. 2 kHz signal is ambiguous in quanta of 100 Cecs, so its

contribution to the composite time is ambiguous in units of 125 Cecs. At

13. 6 kHz, the cyclic ambiguity is 75 Cecs (of 10. 2 kHz) which is multiplied

by 2. 25 to give 168. 75 Cecs as the unit of ambiguity. To leap immediately

to a worst case, suppose there to be a miscount of 3 cycles of 13.6 kHz

and a simultaneous mis-estimate of 4 cycles at 10. 2 kHz, in the same

algebraic sense. The resultant error of the composite time would be

4(125) - 3(168. 75) = -6.25 Cecs of 10.2 kHz. Because the propagational

standard deviations tend to be larger than this quantity, and because simple

patterns of cyclic errors can be constructed to yield a net error that is any

multiple of 6. 25 Cecs of 10. 2 kHz, the possibility of direct lane identification

for this specific composite signal is essentially zero.

-Iw
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I

For other values of m in Eq. (6), the details of such a calculation

vary widely, but in every case we find that a new kind of ambiguity has

been added to the problem of lane identification. This observation leads

to an important rule: if lane identification is required, it must be

established through direct use of the carrier- and difference-frequency

times. After this has been done, the times determined through the lane-

identification process can be used to gain the advantages of composite

signals without introducing further ambiguities.

This entire subject will be carried further when we are ready to

examine the possibilities of ambiguity resolution on a world-wide basis,

which would permit a number of useful services that cannot now be

performed by Omega.

8. DISTRIBUTION OF DEVIATIONS

"Ordinary" deviations from a long-term mean or, hopefully, from a

predicted transmission time may be attributed to minor fluctuations in the

height of the lower ionosphere. There are, however, two kinds of unusual

disturbances that have been mentioned above: the sudden ionospheric

disturbance (SID) and the polar cap anomaly (PCA). Both of these are
4

abnormal depressions of the height of a given contour of ionization caused

by an increase in energy received from the sun. The SID is associated with

a solar flare that emits an unusual amount of ultra-violet and X-ray energy.

Because this burst of energy travels at the velocity of light, the iono-

spheric effects are coincident with the visible flare on the surface of the

sun and are detected only on the sunlit hemisphere of the earth. The SID,

like the flare, typically builds up to a maximum in 5 or 10 minutes and
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frequently subsides within an hour. The PCA is caused by the emission

from the sun of an unusual number of charged particles of which the most

important are probably protons. Because of their charge, these corpuscles

generally penetrate to the lower levels of the ionosphere more or less along

the lines of the earth's magnetic field and arrive in maximum numbers in

the circumpolar zones recognized b7 their maximum auroral activity. The

PCA is therefore primarily a phenomenon observed on trans-arctic

propagation, such as on the path from Norway to Cambridge. Some of the

charged particles producing the PCA occasionally travel at half the speed

of light, but the majority (even from the same solar event) take several

hours, or even days, to reach the earth. Because of this distribution of

velocities in a corpuscular outburst, a PCA is a relatively long-lasting

phenomenon that may take ten days or more before its influence becomes

negligible. The effects are usually somewhat greater in the daytime than

at night.

Since both kinds of anomalies reduce the height of the layer, we find

that the distribution of deviations from the normal or the mean value are

considerably skewed. It is seldom that the propagation time of a carrier-

frequency signal exceeds the normal by more than one or two standard

deviations, but there may be very large reductions from time to time. In

the case of a difference frequency these statements are, of course,

reversed, because of the reciprocal behavior of variations in phase and

group velocities that we have discussed above.

This reversal, with the intermediate case of the 9/4 composite, is

shown in the form of histograms in Fig. 10. The data for this figure

represent noon-time conditions for the Norway-Trinidad pair in a two-year

period near the last maximum of solar activity. The deviations are
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therefore larger, and anomalies more frequent, than for average conditions,

and especially more than at the time of writing, near a minimum of activity.

Three different styles have been used in connecting the plotted points of

Fig. 10, in the hope of making the distinctions between the three curves as

clear as possible. The deviations were, as need hardly be said, taken Vith

respect to the means of the entire two-year period. The long negative tail

at 10. 2 kHz and the positive one at 3. 4 kHz are obvious. The distribution

for m = 9/4 is reasonably near the gaussian.

Similar data for the same dates are shown in different form in Fig. 11.

Here the observations include a single daytime and a single night-time

point for each day, for each of two pairs. The data therefore represent

both day and night and both high- and low-latitude characteristics. They

are plotted as the probability of a deviation being exceeded, without regard

for algebraic sign. The curve for 10. 2 kHz exhibits the ordinary

characteristics of this function. There is a relatively gaussian variation

down to 0. 1 probability or less, with an essentially negative-exponential

variation at the lower probabilities. A straight line fitting the exponential

tail would intercept the probability axis near 0. 1. This presumably

indicates that, at this active part of the solar cycle, about ten percent of

the measurements could be identified as abnormal. Averaged over the

entire solar cycle, the corresponding figure would probably be near three

percent.

Except for the reversal of sign (not shown in Fig. 11) the overall

characteristics of the 3. 4 kHz distribution do not differ greatly from those

at 10. 2 kHz. There is little difference rear the top of the curves, and

something like the 7/9 ratio mentioned in Section 6 can be seen in the low

probabilities. For m 9/4 the deviations are about half as large as for
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10. 2 and 3. 4 kHz, and the exponential tail is much less evident.

The fact that the 3. 4 and m = 9/4 deviations are as small or

smaller than those at 10. Z kHz does not indicate that those composite

signals are to be preferred for all purposes. It has been shown in Section

6 that the effects of atmospheric noise are worse for the composite signals

(because of the multiplication discussed above). As a result, the minute-

to-minute variations are considerably larger for the composites. The

composite deviations, however, seem to vary about a more long-term-

stable mean, probably because the group velocity is inherently more

uniform than is the phase velocity in the dispersive medium. The carrier-

frequency signals, in comparison, are relatively constant in phase for

minutes, or even hours, but show greater changes from day to day than

do the composites. The long-term rms values, as shown in Fig. 11 are

very similar. It remains true, however, that tracking speed and sensitivity

to motion through small distances are much superior for the carrier

frequencies.

9. ERRORS OF PREDICTION

41 ,The navigational error, in a system like Omega, is equal to the

difference between an observed phase and one predicted for the position of

the navigator. When ground-wave propagation can be used, as in Loran,

predictions can be made with excellent accuracy. In Omega, on the other

hand, predictions 1 3 can, at present, only be made in terms of the

dominant wavegulde mode. Dimensional instability in the waveguide and

lossy surfaces that cause variations in the phase shifts at reflection

combine to make the prediction uncertain. Phase shifts due to received

-I
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noise and undesired higher-order modes in the waveguide also induce

fluctuations that must be accepted as errors. *

It is an unwelcome fact that the errors of prediction in Omega are

at present generally larger than the standard deviation of the observed

signals. It is to be expected that this dominance of prediction errors may

eventua'.y be overcome under the influence of further observation and

study, but this fraction of the total error will always be important.

Omega could not be successful were it not for the fortunate fact that

all useful signal components travel at nearly the velocity of light.

Conditions that cause relatively large variations in phase velocity

(transmission across the polar ice-caps, for example, with their ab-

normally low ground conductivity) are also conditions that induce large

losses. There is therefore a filtering action, so that at long distances

those signal components traveling at about the speed of light are dominant.

This is a wordy way of saying that the various conditions affecting the

velocity of a signal must have relatively small coefficients, usually of the

order of a part in a thousand or less.

Most important among the factors included in the Navy computer

program for phase velocities are:

1. Radio frequency

2. Time of day, which define the altitude of the sun

3. Time of year,j which define the altitude of the sun

4. Excitation phase of the signal in the waveguide

5. Path shortening (A recognition of the fact that the layer height

*The writer tends to believe that the second mode-will presently be found
to be sufficiently stable to permit rough prediction. This would provide
some increase in accuracy and a very considerable improvement in the
reliability of lane identification.
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directly over a transmitter or receiver is unimportant because the rays

or modes propagate at low angles above the horizontal)

6. Conductivity of the surface of the earth along or near the

transmission path

7. Direction of propagation with respect to the magnetic field of the

earth.

8. Geomagnetic latitude

9. Geographic latitude

10. Solar activity index, and

11. Special terms under time of day representing sudden photo-

detachment of electrons from negative ions at sunrise and re-attachment

at sunset.

It is obvious that not all of these factors are independent. For

example, the changes of velocity with direction of propagation also depend

upon latitude. Clearly, determination of the coefficients and even the laws

relating velocity to these factors can only be done approximately until

many more studies have been carried out. The Navy's 'Sky Wave

Compensation" tables are revised from time to time as additional

knowledge is acquired, so that operational accuracy is improving with the

passage of time. It is unfortunate that the information stored in the Navy

tables is cumbersome and difficult to use. More and more interest is being

evinced in the use of computcr type rece;vers that calculate the required

velocities as they go. rhl it -t s i desire for simpler computation

programs, provided that *-h-N d- not too seriously degrade accuracy. Some

progress has been made in programs that "truncate" the Navy program to

reduce the computation time and memory cap-city required.
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The writer has for some time been interested in the use of "nominal"

velocity calculations of almost absurd simplicity. These are based upon a

single phase velocity for each frequency in the daytime and another at

night. Thefie two are combined by simple interpolation, dependent only

upon the fraction of each transmission path illuminated at the chosen time.

All of the factors in the tabulation above are neglected, except the first

three.

When examined carefully, this approach is found to have lost or

blurred much useful detail. It is surprising, however, to find that the

root-mean-square errors, averaged over long periods and for many trans-

mission paths, are very satisfactory. The nominal values used for the

frequencies 10. 2 and 13. 6 kHz have been given above in Table II in Section 4.

Corresponding values for other frequencies will be defined later.

To exhibit the navigational errors for various circumstances, it is

convenient to plot the rms error against m. Such a diagram shows at once

the effects for the carrier frequencies 10. 2 and 13. 6 kHz (at m= 0 and

m= 1), for the difference frequency (m= 4) and for other values of m. In

each case the stndard deviation (a) is plotted as the limit that would be

approached if -he errors of prediction were reduced. It might be mentioned

that at Cambridge an error of about 11 Cecs of 10. Z kHz is equivalent to

one nautical mile in position, for each of the pairs. In the following figures

the rms values plotted are for all 24 hours of the day, taken separately.

Figure 12 shows the variation of errors for each of the long-distance

pairs observed in Cambridge in February, 1969. The Navy calculations

upon which the "Navy" errors were based are those for 1972, as it is

demonstrable that the improvement in prediction techniques greatly out

weighs any change with date. The "nominal" predictions were made as

J
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described above with time and frequency the only variables. For the AB

pair, the Navy predictions are seen to be distinctly better at the carrier

frequencies and actually to approach the optimum near m = 1. 5. For the

difference frequency (3.4 kHz or m = 4), however, the Navy prediction

errors are much larger than the nominal ones. There is little to choose

between the prediction methods for the AC pair, where the 3.4 kHz errors

are seen to be distinctly smaller than those at 10. Z kHz. For some curious

reason, probably accidental, the nominal values are better than the Navy

ones for all values of m for the BC pair.

In Fig. 13 we have plotted the root-mean-square values for all three

pairs combined, in the hope that this is relatively typical of navigational

experience. This figure is given primarily to show that a diagram of this

kind can vary considerably from one sample to another. The errors for

the nominal calculations are, as they should be, greater than those with

respect to the Navy tables, except in the region of large m in December.

Figure 14 shows, it is hoped, a fair average of Omega behavior.

It is for a period intermediate between high and low solar activity. The

term "annual" means that it is made up of six samples uniformly distributed

through the year. It shows, interestingly enough, that the Navy predictions

are better for the carrier frequencies, but that the nominal calculations

average a little better for the difference frequency. In either case the

rms navigational errors are substantially twice the propagational standard

deviations, indicating that much improvement in prediction techniques is

still possible.



-47-

r

* RMS OF 3 PAIRS
20-

OCTOBER 1971

15-

NO

N 10

ci
0

5 - 0U

z DECEMBER 1971

W 20
0N

~15

5- - - -

0 2 3 4
m

Figure 13: Roo' -Mean -Square Errors at Cambridge, for Two Dates in
1971.



-48-

z

z
z

AI

ON 0

U4.

U))

Im



-49- i

10. CORRELATION

It is found that at Omega frequencies, the 20-km day-to-night

variation in height of reflection (with accompanying changes in

conductivity) leads to relative changes of two or three parts in a

thousand in the time of transmission of a signal. This diurnal variation

is an order of magnitude larger than the root-mean-square value of the

random variations ordinarily observed. The random fluctuations in a

time, or time difference, measurement thus correspond to fluctuations

of the order of 2% of the height of the base of the ionosphere. Two

conclusions follow upon consideration of this magnitude:

(1) It is not likely that there will be much correlation between

the times of arrival of signals from stations thousands of miles apart, as

atmospheric influences are likely to vary considerably over such

distances and presumably affect the height of the layer.

(2) If propagation can be described in terms of a single waveguide

mode, the instant,.,eous effects of a minor variation in layer height should

be very similar at such closely-spaced frequencies as those in the Omega

spectrum, and the correlation between variations at various frequencies

from a single station, or pair of stations, should be high. Even if there

is a noticeable amount of higher-mode propagation on a transmission

path, the higher-mode components may be quite phase-stable at a given

distance, so that the high correlation between frequencies at a fixed

receiving poini is observed, although the mean transmission time is

more difficult to predict than it would be in the case of a single mode.

If the propagational correlation is indeed high, we shall need to consider

the effects of "noise", whether this be actual atmospheric noise or

AAAMW
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uncorrelated error components due to different instrumental errors at

different frequencies, or other causes.

The station-to-station correlation is simply explored. We may

write the variance equation

2 2
AB = + A +B ZrA,BAB (21)

where

eAB = variance of the time difference between stations A and B

2

(rA = variance of the time of arrival of the signal from A

0B = variance of the time of arrival of the signal from BB

and

rA, B = coefficient of correlation between signals A and B .

If measurements of signal times are made in terms of a local

time standard of high accuracy, it is possible to determine o.A' 0 B'

and a.AB independently. From these measurements the coefficient of

correlation can be determined, as that is the only remaining variable in

Eq. (21). Observations of this kind have been made from time to time

in Cambridge, where three long-distance signals have usually been

available: A in Norway, B in Trinidad, and C in Hawaii. All three

pairs have been examined and the results averaged to give the two

examples shown in Fig. 15. As is to be expected when studying the

variations of variations, the scatter is large. Hourly examples are

shown for two different dates to illustrate the general fact that little

true diurnal variation can be detected in diagrams of this kind. The

--- I
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only conclusion to be drawn is that there appears to be a positive

coefficient of correlation of about 0. 1 or 0. 2 at the 10. 2 kHz carrier

frequency, and one about twice as lage at the difference frequency of

3.4 kHz. These values may have been increased by time fluctuations

of the clock in Cambridge, which have been assumed to be zero in the

analysis. These magnitudes assure us that while a low correlation is

indeed detectable, it is by no means large enough to be an important

factor in navigational accuracy.

The correlation between frequencies is a far different matter, as

suggested above. Its analysis is a little more complex and is convenient-

ly combined with examination of the value of m that leads to minimum

standard deviation. From Eq. (6) we write the variance equation

c = m 2  + (m-l) i T 2rl 2 m(mr-l) 1  a 2  (22)
c , )

where a- is the variance of a composite signal, the subscripts 1 and 2c

refer to the lower and higher of a pair of frequencies, respectively, and

r 112 is the coefficient of correlation between variations at the two

carrier frequencies.

Restricting Eq. (22) to the frequencies 10. 2 and 13. 6 kHz and to

the difference frequency 3.4 kHz for which m = 4 , we have

2 2 2 24r (23)
3,4 9 1 0.Z +16-3.6- 10.2,13.6 "10.2 "13.6

from which r1 0. 2,13.6 may be determined.

An example of data, solved for r in terms of a at these three

frequencies and plotted as a functicn of a-1 3. 6//r 1O. 2 and the

correlation coefficient, is shown in Fig. 16. While the scatter from

-J :
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hour to hour is quite evident, the points in this example have average

coordinates of EI3 . 6 /a 1 0  = 0.61+ and r = 0.94+ . Contours of

constant a- (at m = 9/4) and o3.4 (at m = 4), as referred to

T 10. , have been derived from Eq. (22), and are also shown on Fig. 16.

These contours show that about half of the hourly values of a-0 are less

than one-half of the concurrent values of o-10. 2 ; and about half of the

hourly values of a3.4 are smaller than o10.2 for the same hours,

To find the vertex of the parabola relating 0 c to n, we expand

Eq. (22) for the chosen frequencies:

2 2 Z 2 2 z2 2
a- = ma 1  +m a- -2ma- +(c 13.6 10.2 10.2 10.2

102. , 13 6 m , 1 3. 6 + 02r1. Z,1.3.6 ma-10. a 13 . 6

(24)

Setting d a2/dm = 0, we have

2 2 20 = 2ma- + Zm-- -20 - 4r m- T
13.6 10.2 10.2z 10.2, 13,6 10.2 13.6

+ 2r 10 . 2,13.6 a-1 0 . 2 a- 13.6 (25)

from which

2

m= 2 'lO. z -r10. 2, 13.6 al 0 . 2 (13.6 (26)
a- T +a-' - Zr a- a-

10.Z 13.6 10. Z, 13.6 10. 2 13.6

Using this value of m 0 in Eq. (2Z) we find the minimum variance

-- I
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2 22 22
(min moa 1 3 . 6 + 0- ) a

-Zr 1 0 . 2, 13.6 mo (m - 1) a10.2 13.6 (27)

22 + 2 - r.
0 mo 10.2 U 16 0. 12, 13.6 10.2 13.6 )

2 2- 0m (a-10.2 - r10. , ? 13.6 "10. 2 T13 . 6
) + -I10. 2

Since it can be shown that the magnitude of the first term is one-half

that of the second

2 2 2amin = X10. 2 m( 1 0 . 2 - r 0 , 13. 6 '10. Z1 3 .6 )  (29)

This may be simplified for computation by writing

9 ir + 160-1 3 (Fa
R r r0. Z) 13.6 (-i 0 . 2 -' 3 . 6 =24 (30)

Then
2

A 0 R (31)
10. 2

and
2 2

B = 2 + 1 3. 6 - 2R . (32)10.2 1.

From (Z6)

m = A/B (33)

and from (29)

2 2
Ti = 0I 02 -Am (34)



-56-

Examples of the diurnal variation of m ° for the AC pair are

shown in Fig. 17. it will be recalled that the first-approximation

expectation is m ° = 9/4. For this pair the mean observed value is a

little greater than the theoretical one, but for pairs involving the

relatively short-distance station B, the mean value of m0 is usually

lower than 9/4, probably as a result of a smaller ratio of propagational

to instrumental uncertainties.

This effect is also seen in its reaction upon the coefficient of

correlation as shown in Fig. 18. Here the correlation is higher for

those pairs involving station A (Norway) because the propagation through

the arctic zone of geomagnetic activity introduces large variations in the

time of transit. The pair AB combines large errors from A and small

ones from B, resulting in a correlation coefficient of about 0. 98 at night

and nearly unity in the daytime. The pair with the smallest standard

deviation, BC, shows the lowest coefficient of correlation.

This behavior suggests that there may be a more or less fixed

"noise" (defined here as uncotrelated variations, whether due to actual

received noise or produced by instrumental errors in the receiving

equipment) that combines with highly-correlated propoagational deviations

to produce the observed variances.

This concept can be examined by assuming that there are perfectly-

correlated variations (primarily propagational) whose mean variance is
equal to rl 0 " 2, 13. 6 '10.2 013.6 1 and completely-uncorrelated

variations (noise) whose mean variance is (1 - r1 0 . 2, 13. 6)'10. 2 13. 6

This separation has been carried out for the data used in Fig. 18 to

yield the uncorrelated component of the standard deviation that is shown

.y~ .
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in Fig. 19. Here it is seen that, although in Fig. 18 the correlation

varies widely between the different pairs, there is no great distinction

between pairs in the magnitude of the uncorrelated component of Fig. 19.

All that can be determined from Jig. 19 is that the uncorrelated errors

are not much larger than the nominal errors of measurement and are

somewhat larger at night than in the daytime.

It is of interest to plot the uncorrelated deviation-, against the

correlated ones. As shown in the upper part of Fig. 20, or as could be

deduced from Figs. 18 and 19, there is no great change in the

uncorrelated errors as the correlated ones increase. A noticeable

maximum in the region of 10-1Z centicycles on the abscissa can be seen.

Examination of this effect shows that for the BC pair (where propagational

deviations are small) the correlated errors are larger by night than by

day, while for the pairs involving A the propagational deviations are

larger in the daytime. The 24 points shown in the upper part of Fig. 20

for each pair, do not distinguish between night and day. We have,

therefore, in the lower part of the figure, deleted those points cc- :e-

sponding to the sunrise and sunset intervals. The result is that, as in

Fig. 19, the night-time uncorrelated errors are about twice the daytime

ones, with no distinguishable change as the correlated errors increase.

This hypothesis of perfectly- correlated propagational errors

combining with pure noise that is larger by night than by day must not

be carried too far, although it is a useful concept. A few short measure-

ments of the standard deviation of small difference frequencies have been

made from time to time, particularly in the 1964-1966 era. Although

only fragmentary data exist, they are enough to indicate that the

standard deviation (in time units) of a low beat frequency is



-60-

+ +0

Q+ 00@

0 +

4q)

U+

+ OlD0 0-

00 +

+ e

0 +@
0 +

0+

00
000

+ 0

soe+

+ + 09
Jp 0
N~ 0

ZHI Z*01 J0 S030 NI
NOllVIA30 Q31V-1380ONn

.I



-61-l

+ 0 .
-0

0

0

14+ + 0

00

0 00 
_o U)

I-U-.

0 +

0
+

00 d+ 
-0

03 Laj

II0.
0!I%*

I'u0

0

LA- lo
co

Zipi Z'0 JO S010 NI N011VIA30
ONVONVIS JO 1N31OdW1O 3 OIV1JHHOO0NO



-62-

approximately inversely proportional to the square root of that

frequency. This is most reasonably accounted for in theory by

assuming that the coefficient of correlation differs from unity by an

amount that is proportional to the frequency difference. This is a

physically- satisfying idea that is very probably correct, but for which

there is no room in the over-simplified analysis outlined above.

11. ESTIMATION OF PROPAGATION TIME FOR

FREQUENCIES OTHER THAN 10. 2 AND 13.6 kHz

Because there are several untried frequencies that may be used for

Omega, it is necessary to examine the details of the relationship between

velocity and frequency. This variation is usually expressed in graphical

form because there is no completely satisfactory closed expression for

the velocity in the "waveguide". The waveguide cut-off is at some small

fraction of the Omega frequency band, an near this cut-off frequency the

phase vlocity approaches infinity, or at least becomes relatively large in

comparison with the velocity of light. As frequency increases, the phase

velocity for a particular mode falls more and more slowly. Several

curves of this nature 14 are frequently shown with layer height as a

parameter. An example of one of these is shown in Fig. 21, where the

10-14 kHz navigation band is shaded.

To the extent that one of these curves of phase velocity as a

-unction of frequency approaches an equilateral hyperbola, its reciprocal

approaches a straight line. It is therefore convenieit, for purposes of

intercomparison and others, to consider the graph of c/vp against

wavelength. The values of Fig. 21 have been transformed in this way
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in Fig. 22 where the navigation band is again shaded. One of the

advantages of this representation is that the chord connecting points at

two chosen wavelengths can be produced to zero wavelength, where it

intercepts the axis of ordinates at the value of c/v for the selected

pair of wavelengths.

Now the scale of m is an inverted and displaced wavelength scale.

Zero wavelength corresponds to the difference frequency, where

M = fz/(fz - f 1 ), while the wavelength corresponding to the lower

frequency fI has a value of m equal to zero. This can be visualized

in Fig. 22, if the edges of the shaded band are taken to correspond to

the frequencies 13. 6 and 10. 2 kHz. The origin and the left and right

sides of the shaded band then have the m values 4, 1, and 0, respectively.

The relatively-smaller curvature of this relative time/wavelength

diagram is seen in Fig. 22 and again in Fig. 23. In the latter case, the

sense of the wavelength has been reversed and the scale of relative

wavelength has been taken, for convenience, as the factors by which the

frequency 816 kHz is divided to produce the various Omega frequencies.

Determination of the curvatures in Figs. 21-23 is, so far, largely

theoretical. Experience has given us fairly accurate velocity values for

10. 2 and 13. 6 kHz. Corresponding values for other neighboring

frequencies have been derived in the following way.

As an app-oximation to mode-theory phase velocity, Watt has

given the formula

v kh 2._R = I - -a + [(2Tn - (bg - 0i ) 4cf2f (35)
c a +i(Zn-A f

where k is a factor defining the relative height of the axis of the

waveguide, cited by Watt as 0. 36
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h = height of the reflecting layer

a = radius of the earth

n = mode number (1 in this case)

Og = phase shift at reflection at the surface of the earth

qSi = phase shift at reflection at the ionized layer

and

f = frequency.

Having known values of v P at only two frequencies, it is convenient

to assume the nominal heights of 70 and 90 km for day and night conditions,

respectively, and to solve for values of k and (0g +6 i) . Determination of

these quantities as functions of height is helped a little by deducing

reasonable values at zero height and fitting a power law through three

values in each case. The results of these calculations are given in

Table IV.

TABLE IV

Values for Use in Equation (35)

Time of Day Layer Height k g
in kilometers in radians in degrees

0 0.5 n 180

Day 70 0. 390 2. 745 157

Night 90 0.367 2.518 144

We may use these values in Eq. (35) to derive phade velocities that

have a reasonable variation with frequency and that accurately fit our
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experimental (nominal) values at 10, Z and 13. 6 kHz.

Returning to Fig. 23, we see that the computed values for the

various frequencies fall on a parabola (because Eq. (35) is second order)

that does not differ greatly from the chord between m= 0 and m= 1. For

some purposes it is convenient to slightly distort the scale of m and

reduce the variation in velocity to a straight line. This is done by

defining the m' that would apply if dispersion were linear and referred

to the pair of frequencies 10. 2 and 13. 6 kHz, as

ml = 4 -4.8kz(36)

40, 8kHz
fkHz

and then modifying it to

mef = m' + 0. 140 m'(I -m') . (37)

The constant 0. 140 is determined from the values calculated from

Eq. (35). It varies only a few parts in a thousand between day and night.

It is worthwhile to tabulate values from Eqs. (36) and (37) for a few

interesting frequencies in Table V. The chosen frequencies are those,

in the Omega part of the spectrum, that are obtained by dividing 816 kHz

by an integral divisor that has no prime factor larger than seven. The

reasons for interest in some of these frequencies will be explained below.

This table indicates that, if dispersion were linear, the propagation

time for a signal at 11 1/3 kHz (for example) would be found at 40% of the

way from the time at 10. 2 kHz to that at 13. 6 kHz. In the actual medium

with nonlinear dispersion, the time for il 1/3 kHz is more nearly 43%

of the way between the times for those same frequencies.
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TABLE V

Effective values of m referred to the frequencies 10. 2 and 13. 6 kHz that
serve to define expected phase velocities at various other carrier
frequencies.

Frequency m meff Factors of divisor
in Hertz from 816, 000 Hz

9714.Z28+ -0. 2 -0. 234 2. 2. 3.7

10074.07+ -0.05 -0. 057 3 3- 3.-3

10200 0.0 0.000 2. 2. Z. .° 5

10880 0. 25 0. 276 3- 5. 5

11333.33+ 0.4 0.434 2* Z. Z- 3- 3

11657. 14+ 0.5 0. 535 Z- 5" 7

1Z750 0.8 0.822 2. 2. . 2. Z- 2

12952. 38- 0.85 0. 868 3" 3. 7

13600 1.0 1.000 2.2.3.5

The primrary reason for this transformation is to estimate a family

• t of coherent predictions of propagation times for various interesting

frequencies. A secondary reason is that through this mechanism simple

arithmetic will yield an estimate oC the propagation time for 3. 4 kHz based

upon observations at any pair of frequencies in the Omega spectrum.

It is, of course, clear that an estimation of the 3.4 kHz propagation

time made from any pair of frequencies other than 10. 2 and 13. 6 kHz

becomes less accurate as the difference between the two values of meff

becomes smaller. This is particularly true in the presence of interference
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from higher-order modes in the waveguide. Under the influence of such

modes, the resultant phase may be advanced at one frequency and retarded

at another. The effect upon the time of arrival f an observed difference

frequency will be large if the frequency difference is small.

12. MODIFICATION OF PREDICTIONS

It has been observed, aE in Figs. 12 tc 14, that nominal predictions are

at least as accurate as the Navy predictions at the higher values of m and

especially at the difference frequency, whe:.e rn-4. It is also seen, in the

same figures, that either of kind of prediction tends to be most accurate in

the region of m 9/4, as could be anticipated from the elementary theory

in Section 3.

It follows from these observations that errors of prediction that are

magnified by the multiplications of Eqs. (6) and (7) can be somewhat con-

strained by independent examination of the group velocity, or the velocity

at some other large value of m.

An example of the need for some improvement in prediction is shown

by intercomparison of Figs. 24 and 25. Figure 24 shows an observed

m-line" for each of the 24 hours of the day for a block of data in May,

1971. The data are the same as those of Fig. 5 above but are shown here

distorted by reducing the ordinates at m = 4 by 200 centicycles with

respect to the ordinates at m =0. This adjustment reduces the slopes of

Tig. 5, and permits the use of a more open scale. The dots mark the day

and night nominal values at m= 0 and the intersection of the nominal dy

and night lines at m = 3. 263. The close grouping of the observed lines

near this latter value of m is clear, as it was in Fig. 5.
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The Navy predictions are made at 10.2 and 13.6 kHz (m- 0 and 1).

Minor errors in these predictions are magnified as m increases.

Figure Z5 shows the Navy 1972 predictions that apply for the dates of

Fig. 24, exhibited in the same way as the observed data of that figure.

The deficiencies in the predictions are primarily values that are somewhat

too low at large values of m, and a scattering that reduces -he tendency

to group at an m somewhat greatel than 3.
15

A way of combining easily-made predictions at various values of

m is shown in Fig. 26. This diagram shows five dots at time differences

(ordinates) appropriate to the time and date given on the figure. Horizon+-1

lines mark the times calculated at the velocity of light and at the velocity

used for the Navy charts.

Points at these five values of m can be calculated in the following

ways:

at m = 0 the time is the chart time minus the Sky Wave Compen-
sation given in the Navy 'correction'" tables 1 1 for 10.2 kHz.

at m = 1 the time is the chart time minus 3/4 of the Navy S. W. C.
for 13.6 kHz, because that :'correction'" is tabulated in
centicycles of 13.6 kHz.

at m -9/4 the time is, as explained above, derived from the nominal
daytime reciprocal velocity plus the difference between
nominal night and day reciprocal velocities multiplied by
the fraction of each transmission path in darkness.

at m 263 the time is nornirally fixed at 1.00725 times the time
calculated for the velocity of light.

at m 4 the time shown by the dot is the chart time minus three
times the Navy S. W. C. for 3. 4 kHz; or, alternatively, four
times the time at m = 1 minus three times the time at
rn - 01.
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Another calculation could be made to give the nominal value at m = 4,

but it is not needed for our present study. It would be

T3.4nom = (1. 0095 - 0.0007 F) TG (38)

In the case shown in Fig. 26, the nominal prediction for 3.4 kHz would be

about 1 Cec below the upper right-hand corner of the figure.

In Fig. 26 a best straight line is drawn through the first four dots

described above. A dashed line connects the three points drawn from the

Navy predictions, ar,d shows the relatively-large deviation of the 3. 4 kHz

prediction caused by minor deviations in opposite senses at 10. 2 and

13.6 kHz.

For our present purposes, it is not necessary to concern ourselves

with all the possible points shown on Fig. 26, or other points that might be

calculated. It is obvious that, if (as the writer believes) the "fixed" point

at m = 3. 263 is especially easy to predict accurately, a line dravwn from

the Navy prediction at m = 0 through the fixed point cannot differ greatly

from any other line through the points shown in Fig. 26, excepting the point

representing the Navy prediction at m 4 . It is therefore possible to

deduce a modified prediction for 3. 4 kHz from the Navy prediction at

10. 2 kHz.

The slope of the line connecting the points at m = 0 and m = 3. 263 is

1. 00725 T, - [T - (S. W. C.
s= [ 1 0 2  (39)

3. 263
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where

T is the transit time at the velocity of light

TC is the transit time at the charted velocity

and

S. W. C. is the Navy Sky Wave Compensation

By definition

TC

T - 0.9974 (40)

and Eq. (39) reduces to

S = 0. 003019 TC + 0. 3065 (S. W. C. 10. (41)

For any value of m

T = T C - (S. W. C. )1 0. 2 + mS (42)

or

T = (1 4- 0.003019 ni) T, - (I - 0. 3065 m) (S. W. C. )10. Z

(43)

Letting m = 4

T3.4 = 1.01Z08 TC + 0. 226 (S. W. C. )0. 2 (44)

This relationship may be reduced to a "Modified Sky-Wave Com-

pensation" for 3.4 kHz by subtracting T C and reversing the sign.

Modified (S. W. C. )3 = - 0. 01208 TC - 0.226 (S. W. C.)10. Z (45)
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This construction o. a presumably-improved prediction for 3.4 kHz

is, of course, applicable to the signals from a single station or the time

difference between the signals of a pair.

Figure Z7 shows an example of the comparison between Cambridge

data and the Navy, and also the modified, predictions. The improvement

seen ieqides partly in adjustment of the level of the predictions to the level

of the observed points, but it is perhaps more important that the shape of

the diurnal curve is much more similar to the observed diurnal variation.

It is clearly necessary to produce the best possible predictions at 3. 4 kHz,

as the prediction error at that frequency is probably the most important

single contributor to errors in lane identification.

The methods of this section can be applied by a navigator or a

receiver software designer. It is, however, much more i ii ,rtant that

this, or some similar recognition of the degree of correlation that applies

between signals at 10. 2 and 13.6 kHz, be used to improve the generally-used

predictions. It will be most satisfactory when the Navy prediction methods

improve to the extent that this kind of modification can no longer enhance

operational accuracy.

13. CORRECTIONS OF OBSERVED READINGS

Methods somewhat analogous to those of Section 1Z can be used to

"correct" observed data to provide a modest reduction of differences

between observed and predicted times of propagation. These methods are,

in reality, simply translating the error pattern of a composite signal to an

observed frequency, or to some other interesting or convenient value of m.
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This disclaimer will be discussed more fully below, because without

explanation the treatment may seem to call upon magic rather than science.

Figure 28 is a generalized diagram that will introduce the correction

concept, although its use is simpler than the figure suggests. Let us

suppose that the line having an intercept at TN is a true normal (or

average) representation of time as a function of m, although its actual

position cannot often be known in an observational sense. The dotted line

beginning at Tp is a predicted estimate of the same truth. It is shown, as

appears to be usual, to be nearer the truth near m= 9/4 than nearer m= 0.

Now let us suppose that a pair of observations at m = 0 and m = 1,

as shown by the dots on Fig. Z8, are made at a time when the phase velocity

is anomalously high, such as during an S. I. D. The line through these

points, marked Tobs at m = 0, is shown as intersecting the TN line

(representing long-term average truth) near m = 9/4, as the examples

shown in Figs. 1 and 2 have shown is usually the. case.

A "corrected'' value of time at 10. 2 kHz, for example, can be

calculated by producing the line Tobs to m = 9/4 and then by constructing

a line (dashed in Fig. 28) through the value of Tobs at m = 9/4 back to m= 0

at the slope of the predicted line T The resulting intersection at Tcorr

is the corrected value of the observed time T obs It is seen that, as drawn,

this corrected time is not only closer to the predicted time Tp than is

Tobs , but is actually closer to T than is the normal truth TN. Since

a navigational error is the difference between an observation and the

prediction of that observation this approach to Tp represents a reduction

in error. To say the same thing in other words, if the approximations

used in drawing Fig. 28 are justified, the corrected error under anomalous
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conditions may actually be smaller than -s the normal prediction error at a

time when propagation coincides with the truth line.

At 10. 2 kHz, for example,

corr= T obs + 9/4 (Aobs - Apred)

where

Tob s = observed value at 10. 2 kHz (as shown in Fig. 28)

A obs = observed time at 13. 6 kHz minus observed time at 10. 2 kHz

(observed slope shown in Fig. 28)

Apred = predicted time at 13. 6 kHz minus predicted time at 10. Z kHz

(predicted slope)

The same method can be used to correct an observation at any value

of m. For another example, at 3.4 kHz (m = 4),

Tcorr 3.4 = Tobs 10. Z + 9/4 Aobs + 7/4 Apred (47)

or

TCorr 3.4 = Tohs 3.4 - 7/4 (Aobs Apred) (48)

It is clear that, provided the observed m-line pivots accurately about

the value of the truth line at m = 9/4, the corrected error is independent of

m . In general, therefore, this correction results in transferring the

observed errors at m 9/4 to the predicted time value at the chosen m.

There is a tendency for the correction process to compensate for

errors of prediction that are caused when the T line does not coincide

with the truth line TN . It therefore seems possible that simpler and less

accurate predictions can be used without serious degradation of operatioaal



-82 -

results. The primary utility of the correction, however, is to reduce the

scattering of observations to the scattering applicable at m= 9/4. The

overall effect of this treatment is to reduce the curvej of error of Figs.

lZ-14, for example, to horizontal lines intersecting the observed curves

at m = 9/4.

Examples of the results of the correction process are shown in

Figs. 29-32. Figure 29 shows the individual hourly points observed at

10. 2 kHz on the Trinidad-Hawaii pair in February, 1972. The line shown

is the Navy 1972 prediction. It is conspicuous that the Navy prediction

rises rather sharply after the minimum at 1 1h GMT. The observed data

rose much more slowly, especially between 11h and 13 h , and remain

h
lower than the predictions until after 18

When subjected to the correction process, as shown in Fig. 30, there

is no particular improvement in the night-time hours 00-10 GMT. After

that, however, the corrected observations are constrained to agree much

more closely with the predictions, and the scatter is reduced. Over the

24 hours, the rms error is 12 Cec of 10. Z kHz in Fig. Z9 and 8 Cec in

Fig. 30.

Figure 31 shows observed time differences at 3.4 kHz for the same
.,

pair and date as in Fig. 29. The predicted line in this case is the nominal

one, which fits the data somewhat better than does the Navy prediction.

Corrected to the nominal values, in Fig. 32, the scatter is somewhat re-

duced throughout and the means of the corrected points approach the

predicted values more closely, especially in the later hours of the

Greenwich day. The rms error, over all 24 hours, is reduced from 13 Cec

to 7 Cec by the correction process.
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These methods must not be taken to be cure-alls. They do, however,

exhibit some worthwhile reduction in rms errors, and do seem to take

some of the requirement for extreme precision out of the prediction

problem. Like other uses of the composite- signal idea, these should not

be attempted unless the lane-identification problem has been solved, or can

be shown to be unimportant.

It is the writer's belief that these methods should be examined care-

fully by potential users or designers. If they work as well in other parts

of the world as they do in Cambridge, they will supply another useful

weapon for use in the war against errors.

14. POSSIBLE ADDITIONAL OMEGA FREQUENCIES

1

About a decade ago, the plan for Omega proposed to resolve lane

ambiguities on an essentially world-wide basis. This plan suggested the

use of six harmonically-related frequencies, extending down to 11 1/3 Hz.

There were to be three carrier frequencies at 13600, 11333 1/3, and

10200 Hz, each modulated by one of the frequencies 226 Z/3, 45 1/3, and

11 1/3 Hz. Beats between the carrier frequencies would provide

differences at 3400 and 1133 1/3 Hz. One of each three cycles of 10200 Hz

would be identified by the phase of the 3400 Hz signal; one of each three

cycles of 3400 by the phase at 1133 1/3 Hz; and the modulation frequencies

would extend the identification in ratios of 5, 5, and 4. Taking the

minimum distance corresponding to a unit cyclic error at 10200 Hz to be 8

nautical miles (actually 14. 70 km), the proposed pattern, if successful,
10200

would have extended the separation between ambiguities to 11 1/3 x 8

7200 nautical miles.
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A technical difficulty in this plan arises from the fact that a properly-

loaded Omega transmitting antenna is a relatively sharply-tuned single

resonant circuit having a bandwidth of the order of 10-20 Hz; an uncertain

value varying inversely with the antenna efficiency. Transmission of the

phase modulation signals through such a bandwidth would be very ineffective,

especially at the higher modulation frequencies.

At least at 226 2/3 Hz, and perhaps at 45 1/3 Hz, this plan would (
require triple-tuning the transmitting antenna. This is perfectly feasible

in an engineering sense, as the relative frequency separations are large

in comparison with the selectivity attainable in the several required

resonant circuits. Unfortunately, however, these circuits would need to

operate with typical antenna currents of 500 amperes at about 200,000

volts, and would consequently be large and expensive. A number of

experiments with low frequencies phase-modulated at a very low modulation

index were successfully carried out, aided by the suppression of noise by

the strong carrier and the use of relatively-long time constants in

receiving the low frequencies. This proposal, however, never became

popular.

An alternative suggestion of transmitting additional carriers at more

closely spaced frequencies was also proposed. This suggestion, however,

would lead to the requirement for extremely selective and consequently

expensive receivers for the Omega signals.

As a result of these difficulties, real or exaggerated, the Navy

decided not to implement any Omega frequencies except the original three

carriers, which would, in theory, expand the ambiguous lanes to 72

nautical miles or more. Under the very reasonable assumption that a

) -
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navigator with a continuously-running navigation aid should never allow

himself to oe unf.ertain of his position by as much as 36 nautical miles,

this level of ambiguity resolution was defined as adequate.

Unfortunately, this Navy decision to save money and limit the range

of ambiguity resolution failed to provide the signals necessary for many

potential peripheral services not involving a human operator and not

requiring continuous operation, such as automatic tracking of balloons,

drifting buoys, or icebergs. Of these, by far the most important is for the

automatic location of the position of vessels or personnel in distress.

The obvious requirement for this kind of service has been explored

in recent years, particularly under the name of "Global Rescue Alarm

Net" by a team made up of people from the Navy, NASA, Air Force, and

16
Coaqt Guard. Relaying of Omega signals by geostationary satellite has

been successfully tested and experiments in extending the range of

ambiguity resolution have been begun.

In an effort to avoid the difficulties mentioned above, the exploration

of increased capability is based upon a slight variant of the older ideas--the

beat between beats. This concept is most easily explained by describing

the use of a fourth Omega frequency which has already been subjected to

preliminary tests. This fourth frequency is at 10880 Hz and is used as

shown in Table VI.

By this trick a coherent signal at 226 2/3 Hz is produced without

requiring a carrier whose separation from any of the first three carriers

is less than 453 1/3 Hz. The beat-between-beats is demonstrably less

precise than a first-order beat, but the difference between orders is not

serious because, at these low frequencies, ordinary instrumental errors

jj

I--I
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TABLE VI

Frequency Beats to Identify 1133 1/3 Hz

All values in Hertz

13600 - 10200 = 3400 which identifies 10200

11333 1/3 - 10200 = 1133 1/3 which identifies 3400

10880 - l0Z00 = 680

11333 1/3 - 10880 = 453 1/3

680 - 453 1/3 = Z26 2/3 which identifies 1133 1/3

tend to be dominant and the propagational contributions to error become

relatively unimportant.

A lowest frequency of 226 2/3 Hz is by no means adequate. To

extend this range of identification (from 72 X 5 = 360 nautical miles) to

greater distances, there are several techniques that might be used. These

are:

1. Measurement of the relative times of arrival of the bursts of

Omega signals. 17

These can be measured only at the beginning or end of each

individual signal. Under poor signal-to-noise conditions, each single

measurement has a standard deviation of the order of the rise time, or

15-20 milliseconds, To identify a 360-mile lane the uncertainty of the

measurement must be well below one millisecond. This technique would

therefore require integration over some hundreds of bursts of signal. By

using all four frequencies suggested above, the total integration time

.. A
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required might be kept within reasonable limits, but the writer is somewhat

pessimistic about the prospect.

2. Use of one or more low modulation frequencies.

This is an attrative technique because it fits the phase-measure-

ment pattern of the Omega system, provided that a satisfactory modulation

index can be achieved without requiring multiple tuning of the transmitting

antennas. The writer suggests a single modulated component, probably

at 22 2/3 Hz, which should be radiated without suffering too great sideband

attenuation by the transmitting antenna, and which should reliably identify

a period of 226 2/3 Hz, yielding 3600 mile lanes.

3. Measurement of beats between beats using a fifth carrier

frequency, to produce an effective frequency, probably of 3Z 8/21 Hz.

This method has the advantage of repeating the technique used for

the 360-mile lanes. Since the only convenient frequencies would divide the

226 2/3 Hz frequency by seven, this method would yield 2520-mile lanes.

4. Measurement of relative amplitude or, more probably, relative

i-- signal-to-noise ratios between stations of a pair.

Typical attenuation rates are 2-3 decibels/megameter. It is

probable that relative signal strengths can be predicted and measured to

within 6-10 decibels. This would give a standard deviation of the order of

a thousand miles, without further ambiguity.
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5. Measurement of the dispersion of signals, almost certainly

between 10.2 and 13.6 kHz. I
Dispersion is a questionable technique. The writer's observations

indicate a single-station long-term standard deviation of about 3 Cecs of

10. 2 kHz per unit of m, but there are ambiguities at intervals of 25 Cecs.

These values correspond to a standard deviation of a single-station

distance of about 200 nautical miles but with ambiguities at about 1600

mile intervals. The chief operational difficulty with dispersion is its large

diurnal variation. Because position must be known, at least roughly,

before the dispersion slope can be predicted, this method would require an

iterative solution.

The writer's preference among these choices is either technique

number 2 or 3 to identify in lanes of 2500 miles or more, with number 4

used to reduce the operational ambiguity to zero.

A 22 2/3 Hz modulation would presumably be the easiest method to

implement, because it basically requires only the addition of a low-level

phase modulator at eachtransmitter, while the modulation can be stripped
!

off from existing phase detectors in the receivers. A little more expensive,

but most attractive, is the addition of one of two possibie fifth carrier

frequencies, in accordance with one of the patterns in Table VII.

Thus the addition of either 816000/63 = 12952+ Hz or 816000/84

9714+ Hz to the previously-recommended four frequencies would provide

ambiguities separated by 7 x 360 = 2520 nautical miles. After this step,

a relatively easy observation of signal-to-noise ratios should remove all

ambiguities.
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TABLE VII

Frequency Beats to Identify via 226 2/3 Hz

All values in Hertz

CHOICE A

13600 - 10200 = 3400 which identifies 10200

11333 1/3 - 1OZO0 = 1133 1/3 which identifies 3400 /
10880 - 10200 = 680

11333 1/3 - 10880 = 453 1/3

680 - 453 1/3 = 226 2/3 which identifies 1133 1/3

10200 - 9714 2/7 = 485 5/7

485 5/7 - 453 1/3 = 32 8/21 which identifies 226 2/3

CHOICE B

13600 - 10200 =" 3400 which identifies 10200

11333 1/3 - 10200 = 1133 1/3 which identifies 3400

10880 - 1000 680

-, 11333 1/3 - 10880 = 453 1/3

680 - 453 1/3 = 226 2/3 which identifies 1133 1/3

13600 - 12952 8/21 = 647 13/21

680 - 647 13/21 = 32 8/21 which identifies 226 2/3
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The degree of frequency division in each step attainable in the Omega

pattern, where all transmitted frequencies are equal to 816 kHz divided by

a whole number, is determined by the largest prime factor in the divisor.

The possibilities have been listed in Table V for all frequencies where the

largest prime factor is less than 11. The frequency 10074 2/27 Hz must be

discarded as too close to the existing frequency 10200 Hz. Table V

indicates that there is one other set of additional frequencies that might be

as satisfactory as the schemes outlined above. This set is identified in

Table VIII.

TABLE VIJI

Fiequency Beats to Identify via 283 1/3 Hz

All values in Hertz

13600 - 10200 = 3400 which identifies 10200

11333 1/3 - 10200 = 1133 1/3 which identifies 3400

13600 - 12750 = 850 which also identifies 3400

1133 1/3 - 850 283 1/3 which identifies 850 or 1133 1/3

11657 1/7 - 11333 1/3 = 323 17/21

323 17/21 - 283 1/3 = 40 10/21 which identifies 283 1/3

This pattern divides 1133 1/3 Hz by 4 by 7, rather than by 5 by 7 as

in the preceding table, giving lanes of 2016 nautical miles rather than

2520.
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Of these three choices (A and B in Table VII, and Table VIII), the

writer prefers VII A, because the beats providing the lower frequencies are

all derived in the low-frequency part of the Omega spectrum. A possible

administrative disadvantage is that the fifth carrier frequency lies below

the 10-14 lk-z navigation band, but this frequency would, of course, suffer

the least from the effects of higher-order modes in the waveguide. In

VII B, 680 Hz is the beat between the two lowest carrier frequencies,

whle 647 13/21 is the beat between the two highest frequencies. Under

this condition the non-linearity of the dispersion and the tendency for Znd

mode interference to be greater at the higher frequencies are matters of

some concern. In Table VIII, 1133 1/3 Hz is the beat between the two

lowest frequencies while 850 Hz is the beat between the two highest

frequencies. The same principles apply, although perhaps not to a serious

extent because at this point the division ratio is only 4, rather than 7. This

pattern is also less desirable because the smallest separation between

carrier frequencies is 323 17/21 Hz, as compared with 453 1/3 Hz in the

patterns of Table VII. This reduced separation would have a more serious

impact upon the problems of receiver design.

Details of the way in which these frequencies may be intercompared

in the lane identification process will be discussed in Section 18.

The chief problem before us here is to add a minimum amount of

information to the Omega signal format to permit reliable world-wide lane

identification. Clearly, in the writer's opinion, the first trials of the

fourth frequency (under GRAN auspices) have been entirely satisfactory.

At the accuracy level required, the signal-to-noise measurement should

give no trouble, but it is easy to test this as a byproduct of other trials.
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17
The time-of-arrival technique might replace either the modulation or

the fifth carrier, in spite of the writer's pessimism. It can be tested inde-

pendently at any time. It would certainly supersede the signal-to-noise mea-

surement if it were used, but it is probably not worth instrumenting unless it

also forms a reliable replacement of everything beyond the fourth frequency.

15. LANE IDENTIFICATION

Since a relayed distress signal may not be accompanied by any prior

knowledge about position, there is obviously a requirement for an essentially

world-wide resolution of ambiguities. As a first step in this program, we

have recommended the addition of a fourth carrier frequency at 10. 88 kHz as

outlined in Section 14. This frequency is chosen as one possible way to

transmit a frequency difference five times less than the present 1133 1/3 Hz

difference. This new difference does not appear directly. It is a second-

order beat between beats of 680 and 453 1/3 Hz. The reason for this choice

is to keep the carrier frequencies as widely separated as possible to avoid

complicating the frequency-selectivity problem in Omega receivers. It is

realized that the beat-between-beats degrades accuracy to some extent, but

we believe that the increasing correlation between fluctuations at more

closely spaced frequencies will compensate this difficulty. The proposed

scheme is roughly that a phase measurement at 2Z7 Hz will be accurate

enough to identify a period at some higher frequency, say 1133 Hz, while the

observation at 1133 Hz will identify a period of 3400 Hz, and so on. In

practice it appears worthwhile to keep account of all beat-frequency phases

and carry forward, at each step, a weighted mean of what has been

established earlier, as will be explained below.
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The ultimate system will require information at one frequency below

227 Hz, at least. Pending trial, our present suggestion is that a single

modulation at 22 2/3 Hz (probably on the 10. 88 kHz carrier) would be

adequate for this purpose. Any further ambiguity resolution required

would be available from consideration of relative signal-to-noise ratios as

this quantity is a rough inverse measure of distance from a transmitter.

We have experience at two frequencies (10. 2 and 13. 6 kHz) that

permits us to identify the relative phase velocities and relative attenuation

rates of second-mode components of the signals at these two frequencies,

under circumstances of large second-mode difficulty. These data are from

flights, made a number of years ago, conducted by the (British) Royal

Aircraft Establishment and the (U. S.) Naval Research Laboratory. The

fact that our simulation of the propagational factors is about right is

indicated in Fig. 33, where the dots represent NRL data, privately

communicated, and the line is our computed variation with distance.

By interpolation we have derived corresponding pi'opagational

constants for the frequencies 10.88 and 11. 33 kHz, and have calculated the

phases and amplitudes of the beats (taken with respect to the first-order

mode, which is the basis of the Omega distance calculations) at the four

frequencies of immediate interest. These variations are shown as

functions of distance in Fig. 34. The point of most obvious interest is

that the departures of the four resultant phases from the first-mode

reference become relatively random beyond a distance of 1 or 2 megameters.

This point, unfortunately, is of no importance to our immediate problem of

lane identification, which proceeds as follows using, as an example, the

conditions at 3. 9 megameters distance from the hypothetical transmitter.

-I
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We start by obtaining simulated data for the phases of the four

carrier-frequency signals. Because the values of Fig. 34 are given in

time units the procedure is as shown in Table IX.

TABLE IX

Phases in Carrier Periods at Various Frequencies

Freq. I st mode Resultant Resultant Phase
Time re 1st mode Time in periods

10.2 13274.5 +4.4 13278.9 132. 79

10.88 13282.4 -6. 1 13276. 3 141.61

11. 33 13286.4 -4.2 13282. 2 147.58

13.6 13302.3 -6.2 13296. 1 177.28

In this table, the times are given in centicycles (or centiperiods) of 10. 2

kHz. The phases are therefore determined by dividing the resultant times

by 100 times the ratio 10. 2 kHz/frequency. Because the Omega system

measures only relative phase, we can know only the decimal fraction of

these phases. The lane identification (or ambiguity resolution) problem is

to reconstruct the whole phase numbers. This process is carried as far as

the 3400 Hz differen e frequency in Table X.
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TABLE X

Resolution of Difference-Frequency Phases

1 z 3 4 5 6 7 8 9 10

Esti- Dev. of Sum Group
Obs. mated deduced Deduced of Divi- Period Time

Freq. Wt. Phase Phase phase Phase Phases sor in Cecs in Cecs

227 1 0.85 2. 85 2.85 0.5 4500 12825

453 2 0.97 5.70 +0.27 5.97 8.82 1.0 2250 1343Z

680 3 0.82 8.82 0.00 8.8Z 17.64 1.2 1500 13Z30

1133 5 0.79 14.70 +0.09 14.79 32.43 1. 1 900 13311

2267 10 0.70 29.48 +0. ZZ 29.70 62.13 1.75 450 13365

2720 12 0.67 35.50 +0.17 35.67 97.80 Z. 2 375 13376

3400 15 0.49 44.45 +0.04 44.49 300 13347

Weights (column 2) are taken as proportional to frequency. The difference-

frequency phases are determined bv subtracting the "observed" decimal

part of the phase for the lower frequency in each pair in Table IX from the

corresponding value for the higher frequency, with, if necessary, unity

added so that the difference remains in the positive sense. For exampe,

the phase at 3400 Hz is 1.28 - 0. 79 = 0.49 . An exception is the phase of

227 Hz, for which the ''observed" values are found in column 3 on the

second and third lines of Table X; in this instance, 1. 82 - 0. 97 ; 0. 85.

The identification proceeds as follows. Having determined (from

prior knowledge or from measurements at a lower frequency not yet

available) that the whole observed phase at 227 Hz is 2. 85 periods, the only
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available estimate for 453 Hz is twice this value or 5. 70 periods. In the

table this value for column 4 is found by dividing the summation in column 7

by the divisor in column 8. The deduced phase must have the decimal

part of the observed phase, and must lie within plus or minus 1/2 period

of the estimated phase. The value in this case is 5. 97.

Two estimates are possible for 680 Hz: 3 times the phase of 227, or

1 1/2 times the phase of 453. Because Z27 Hz is the difference between

these two frequencies, the two estimates give the same result. In the

table the deduced value at 680 Hz is the sum of 2. 85 and 5.97, or 8.82

periods. The deviation from the estimated value must be zero. As we

proceed line by line down the table, the multiplier for each line, to reduce

the summation to yield the next estimate is equal to the weight (column 2)

for the wanted frequency divided by the sum of the weights above that line.

For 2267 Hz, for example, the weight is 10 and the sum of the previous

weights is 11. This is given in column 8 as a divisor, simply because all

needed values are thus expressed in short form rather than as repeating

decirr. Is or fractions. As Table X shows, the deduced phase for 3400 Hz

is 44. 49 periods. Since this is equal to the difference between the phases

of 13. 6 and 10. 2 kHz in Table IX, the identification, in this case, has been

successful.

For purposes of intercomparison, column 10 of Table X gives the

time of propagation for each frequency. This is, of course, the period

multiplied by the deduced phase.

It is obvious that a difference between an actual phase and a predicted

phase that is greater than 1/Z period will result in a mis-identification.

This difference is not necessarily quite the same as the deviation in
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column 5 of Table X. The tabulated deviation remains, however, an

excellent measure of confidence in the ambiguity resolution, to the extent

that all values are smalle-" than 0. 50.

Actually, in this tabulation, there are only two deviations that are

important criteria. This can be determined by expressing the methods of

Table X in terms of the original carrier phases. This procedure yields the

results in Table XI.

TABLE XI

Deviations from Expectation at Various Frequencies

Frequency Deviation = deduced phase - estimated phase

453 +20i0. 2 - 510.88 + 3 11.33

680 Zero

1133 1/ 3 (+ ZI 10. 2 - 5010.88 + 3h 11.33 )

Z267 1/11 (+ 30 0.2 - 200I0.88 - ZI1I1. 33 + 1113.6)

Z720 1/ 7 (+ 1200 .2 - 1500.88 + 3013.6 )

3400 1/11 (+ 400.2 - 5010.88 + Ol3.6)

Intercomparison of these rules shows that:

(1) Dev. 680 = 0, as mentioned above.

(2) Dev. 1133 = 1/3 Dev. 453.

(3) Dev. 3400 = 7/33 Dev. 2720.

(4) Dev. Z720 : 4/7 Dev. Z267, without exact proof.

U
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The success of the identification can therefore be judged from the

deviations at 453 and 2267 Hz.

The relatively severe conditions of second-mode interference

postulated in this study lead to a number of failures of identification at one

distance or another. These occur when there happens to be such a

difference between the resultant carrier phases that the observed phases

lead to a "wrong" conclusion. For example, a deviation of +10 ceinti-

cycles (of 10. 2 kHz) from the predicted value at 13. 6 kHz at the same

time as a deviation of -8 centicycles at i0. 2 kHz will lead to a deviation at

3400 Hz of

4 (+10) - 3 (-8) = +64 Cecs of 10.2 kHz.

Even worse, the deviation from prediction of 10. 2 kHz with respect to

3400 Hz, which is the difference apon which this identification really

depends, is -8 - (+64) = -7?. centicycles. Since the half-period of 10.2

kHz is only 50 Cecs, a mis-identification will result in this case or in any

case where the multiplied sum of the deviations exceeds 50 Cecs of

10. 2 kHz.

Examination of the data for rig. 34 shows that there are occasional
/

4t. distances at which the time vairiations at the four frequencies fall into

reasonably straight lines when plotted against frequency or, preferably,

wavelength. At these distances, lane identification at 10. 2 kHz may be

totally impossible because the entire family of difference frequencies

agrees in pointing to a wrong cycle at 10. 2 kHz. There is no evidence

available to indicate that this is happening and no cure for the effect,

except perhaps to transmit a suff'ciently large set of frequencies so that

this kind of coincidence is reduced to a negligible probability. In an
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engineering sense, this solution is not satisfactory.

It is a fortunate feature, due largely to the fact that all difference

frequencies are propagated at much the same group velocity, that

identification as far as 3400 Hz, as in the example above, may be much

more reliable than identification at 10. 2 kHz can possibly be. This is very

satisfying because, as we have shown in earlier sections, both the standard

deviation and the time predictability at 3400 Hz are not inferior to those

at 10. 2 kHz, unless an unusual amount of uncorrelated variation (noise,

for example) is present. We may therefore look forward to determining

position at 3.4 kHz without bothering with the 10. 2 kHz position unless all

deviations are very small, or unless other evidence (such as station

redundancy) indicates that that identification is correct.

Fixing our attention, therefore, on the 3400 Hz beat, we may

examine its time variations from prediction in the light of the deviations

frorn expectation of the 453 and 2267 Hz frequencies identified above.

These interesting quantities (for the synthetic signals under examination)

are shown in Fig. 35. At the top, the deviation from prediction is seen

to have (besides minor variations) cyclic errors of +300 Cecs at

distances of 0. 5, 1.5, 1. 6, 2.4, and Z. 5 megameters, while errors of

-1800 Cecs occur at 1. 6, 3. 8 and 4. 8 megameters. * The three larger

errors are caused by cyclic errors at 453 Hz itself when a large positive

deviation (as indicated by dotted lines) had to be interpreted as a large

negative one because our arithmetic will not permit a deviation larger than

0. 5 period. These points are indicated by solid dots on the lower two

curves of Fig. 35.
*It should be noted that both kinds of errors occur at 1. 6 Mm, resulting in

a net error of -1500 Cecs.
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As shown by the open circles in Fig. 35, the distances at which 1

period errors at 3400 Hz occur are those distances at which a large

negative deviation at 453 Hz coincides with a large positive deviation at

2267 Hz.

It is, of course, conceivable that a deviation at 453 Hz might be as

large as one whole period and therefore undetectable. This appears to be

very unlikely as the second-mode magnitude we have assumed is the largest

yet reported, while the "ordinary" more or less gaussian deviations

produced by noise and uncorrelated instrumental errors do not seem

likely to exceed 0. 04 or 0. 05 period at 453 Hz. In the practical case, such

a large error as that caused by mis-identification at 453 Hz should be

easily resolved by intercomparison with the data from other redundant

pairs of stations.

It thus appears that, by study of the deviations at 453 and 2267 Hz,

in a lane-ambiguity calculation like that of Table X, it will be possible not

only to measure the confidence to be felt in the lane identification but even

to repair the data for 3400 Hz in cases where second-mode interference or

random errors cause trouble at Z267 and therefore 3400 Hz.

t /

16. INTERCEPTS OR AVERAGES?

If all lane identifications have been correctly made, it is possible

to reduce readings at a number of frequencies to a single value having a

smaller standard deviation than have the individual readings. This is

conveniently done by using the linearizing process of Section 11.

In the past, the writer has occasionally recommended that the inter-

cept of the best m-line at m= 0 be used for this purpose. Trials of a

-J!
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limited number of calculations had indicated that this process gave a r
surprisingly small error and, of course, there were obvious advantages

in referring the readings to the frequency for which the Navy charts and

tables are calculated.

Using the values of effective m derived in Table V, for the "first"

four frequencies equally weighted, the mean value of T is, of course,

Tavg = 1/4 (T 1 0. 2 + T1 0.88 + T1 1 .33 + T 1 3 . 6 )  (49)

The least-square solution for the best straight line has the slope

=-0. 80 TI0 - 0. 28 T0"8 + 0. 01 TI"3 + 1. 07 TI3 (50)
=-.T 1 0 . 2  +0.8 1 1 . 3 3  13.6

and the intercept at m = 0

T = 0.59 T10 . 
+ 0.37 T10.88 + 0.125 T1.33 - 0.21 T13.6 (51)

It is interesting that the mean value of meff (for equal weights) is

0.4275, or almost exactly the effective m for the frequency 11. 33 kHz.

It is hard to assign unequal weights to the various frequencies because the

ordinary standard deviation decreases with increasing frequency while the

unfortunate effects of higher-order modes increase with frequency.

Two examples of the intercept solution are shown in Fig. 36, which

is drawn from the calcu]ations discussed in connection with Fig. 34 in

Section 14. Because this is an hypothetical construction, it is possible to

show, by dashed lines in Fig. 36, the positions of the straight lines

representing the first mode alone. The calculated times for the resultant

of first and second modes are shown by dots for a distance of 6 Mn and by

MOON
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circles for a distance of 3 Mm. The solid lines, in both cases, are the C

best straight lines through the resultant points, in accordance with Eqs.

(50) and (51). It is conspicuous that the intercepts are close to the values

of the first-mode lines at m = 0.

Further examination of these effects at various distances reveals

that there are cases in which this agreement of the intercept is not so

satisfactory. In fact, it is hard to deny the presumed fact that the mean of

the four times should be the most stable quantity we can measure. That

this mean works very well is shown by Fig. 37. All that one could expect

of the mean of four random times is that it should have half of the

deviations of the individual times. As Fig. 37 shows, beyond about 1.5

megameters the mean of the four frequencies seems to have deviations

about half of the magnitude of those at 10. 2 kHz. At these longer distances

the second-mode phases have achieved a high degree of randomness, even

though our calculations have, no doubt, made them more coherent than is

to be expected in nature.

The combination of observations at several frequencies into a single

best value has one important operational advantage, in addition to an
1Z

improvement in accuracy, as pointed out by Mactaggart. If, as Fig. 34

indicates is probable under conditions of severe mode contamination, a

frequency falls into an interference null, this fact can be detected from

signal-to-noise examination and the offending frequency can have its

weight reduced or be eliminated from the mean. Of course the calculation

of the mean (or the intercept) must, in this case, be adjusted to compensate

for the dispersion. The simplest procedure for this is probably to reduce

all readings separately to the chart value, or to some other convenient
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base, before determining the mean or the intercept. The mean has then

the advantage of simplicity (if the weights are taken as equal) over the

intercept, as well as a theoretical advantage.

Although Eqs. 49 to 51 have been cited for only the four-frequency

case, it is obvious that similar relations can be derived for five, or for

any other number of frequencies. Here, as in station redundancy, there

is greater strength in a larger union. f

17. 3.4 KILOHERTZ NAVIGATION

We have seen in Sections 8 and 9 that the long-term root-mean-

square errors at the beat frequency of 3. 4 kHz are not seriously larger

than at 10. 2 kHz. It has also been shown in Section 14 and elsewhere that

there are both theoretical and experimental grounds for the belief that lane

identification up to the 24-mile lanes of 3.4 kHz is much more reliable

than is identification at the carrier frequencies. These considerations

lead to the idea that navigation might well be performed at 3. 4 kHz, without

direct use of the carrier frequencies, in cases where the reliability of lane

identification is of critical importance; for example, in the search and

rescue problem; or in civil aviation where the degree of absolute accuracy

is of secondary importance as compared with a guarantee that an aircraft

has not strayed outside of its proper lane. This is not a new idea. It has

been suggested from time to time 1 8 ever sinc the relatively small

diurnal variation at 3.4 kHz was first observed.

It has been said above, in Section 9, that the effect of uncorrelated

fluctuations (primarily noise) is to cause relatively large moment-to-

moment variations in the phase of a beat frequency as compared with a
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carrier frequency. This makes a beat frequency, such as 3. 4 kHz, less

attractive for many navigational uses, because one of the delights of t

carrier-phase navigation is its prompt response to motion through

relatively small distances. In many other cases, however, especially

when the short-term dead reckoning is carried forward by a inertial

system 1 9 or other mechanism, the somewhat blurry response at 3. 4 kHz

does not constitute an important problem.

A defect of the ambiguity-resolution process in Ormega is that a

four-mile error (that demonstrably can happen at times) at 3. 4 kHz can

force an eight-mile error at 10. 2 kHz. There is a moderate probability

that four-mile (1/2 lane at 10. 2 kHz) errors will occur at 3.4 kHz under

the influence of large second mode interference, but apparently very little

chance of errors at 3. 4 kHz as large as eight miles. Under these severe

conditions, it is possible that the root-mean-square distance errors at

10. 2 kHz may exceed those at 3. 4 kHz.

An example of this, at the shorter distances, ca., be drawn from the

synthetic data described in Section 15. It is shown in Fig. 38. This

diagram exhibits resultant timing err")rs as functions of distance, at 3.4

and at 10.2 kHz. In the upper part of the figure, dashed lines show the

levels corresponding to ± 1/2 period at 10. 2 kHz. At the distances where

an error exceeds these approximate limits, the lane identification process

forces an error of approximately one period at 10. 2 kHz.

In Fig. 38, at 0. 5 and 0. 6 Mm, the deviations at 3. 4 kHz are as

great as those at 10. 2 kHz. In the range between 1 and 3. 5 Mm, there

are several instances of the forced magnification of errors. As a result

in the distances less than 3. 5 Mm the rms deviations at 10. 2 kHz are about

*"Gross" errors, indicated by dotted lines and numbers, have been corrected
in this diagram. See Fig. 35.
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1. 3 times as great as those at 3.4 kHz. At the longer d-stances, where 1'

the second mode problcns are not extreme, the lanc identification works

as it should and the 10. 2 kHz deviations are far smaller than those at

3.4 kHz.

While it is interesting that there are extreme circumstances under

which the errors of 3.4 kHz navigation may be less than those at 10.2 kHz,

any plan for the actual use of the difference frequency should be based

upon the long-term statistics. These must, of course, include the errors

of prediction. Data showing, to some degree, typical deviations of both

propagation and prediction, as seen at Cambridge, have shown in Section 9.

Studies of similar data for a number of other places, and examinations of

other methods of prediction at 3.4 kHz, ought to be carried out to define

the true merits cf that difference frequency for direct navigation.

As a final warning that 3. 4 k}iz should not be used without extreme

care in the receiver design (as said at the end of Section 6), the relation-

ships of Eq. (22) have been shown in another form in Fig. 39. This

diagram plots the ratio of the standard deviation at 3. 4 kHz to that at

10. 2 kHz as a function of the coefficient of correlation, for the important

range of 013. 6/10. 2 . As was shown in Fig. 9, the ordinary value of

a3.4/'10. z2 for the case of noise when r = 0, is about 4, and it is about

z 1 /Z times laiger when r = -1 . The important point in Fig. 39 is that

03.4 cannot be less than ol0. unless r is greater than 0. 943, In fact,

for the usual range of variation of 13.6/'10. Z' the realized correlation

coefficient must be at least 0. 97 or 0. 98 if the deviations of 3. 4 kHz are to

be kept less than those at 10. 2 kHz. It is to guarantee the observational

realization of such a high coefficient of correlation that extreme care must

be taken in the design of receiver channels.

9-
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18. COMPUTATION OF POSITION

When we have secured Omega time-difference readings for two or

more pairs of stations, with confidence in their freedom from possible

phase ambiguities, we may proceed to the determination of position. It

will be assumed herein that this position is to be expressed in latitude and

longitude in degrees of arc.

The fundamental difficulties in this procedure lie in the inconvenience

of the hyperbolic lines of position and especially in the intractability of the

mathematics for the hyperbolae on the surface of an oblate earth. It is

necessary, in practice, to calculate the readings to be expected at a known

position. The charts and tables of the Oceanographic Office, for example,

are made by inverse interpolation between readings calculated for a grid of

uniformly spaced points.

It is equally possible to calculate by successive approximations the

coordinates of the point at which the observed time differences apply. 20

To do this reasonably economically, it is necessary to find a mechanism

that, for any assumed position, will give an estimate of how far and in

what direction to go to find a closer approximation to the true position.

In Omega, where any position is reasonably well surrounded by

transmitting stations, this process is easy. To take a case of maximum

simplicity, assume that a navigator is at a point where n useful signals

are received from n stations at such locations that the azimuths of the

transmitters are all separated by 360 0/n, or its multiples. At such a

position (say one with 4 stations north, south, east, and west of the

navigator) the mean distance from the stations does not vary with the

-j-
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position of the navigator until he moves far enough to invalidate the

assumed condition.

In more general terms, for any group of useful Omega stations there

is a point where the mean distance is a minimum. Departure from this

point will lead, at first, to only a small increase in the mean distance. If

the navigator should move so far that he is entirely outside of the group of

stations, he will approach a situation where the mean distance may

increase as rapidly as he moves. This is, however, a contrary-to-fact

condition in Omega, as he should then be operating in a different group of

stations. The mean distance, therefore, represents a relatively stable and

predictable base of comparison for the individual station distances. It is

this excess stability of the mean distance that makes detection of the error

of an assumed position easy and practical.

Observed time differences for Omega pairs can easily be converted

into differences between the individual station distances and the mean

distance. This is done in general by saying

n(A-mean) = (A-A) + (A-B) + (A-C) + .... (52)

where A, B, C, --- are distances from stations and n is the number of

stations.

If AB, AC, BC, and so on are taken as the usual Omega shorthand

for (A-B) and the other time differences, then, for three stations

A - mean = 1/3 (AB +AC) (53)

or, since AC =AB + BC,

A - mean r 1/3 (2AB + BC) (54)
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Similarly I

B -mean = 1/3 (-AB + BC) (55)

and

C - mean 1/3 (-AB - ZBC) (56)

This process can be extended to any number of stations to give the

deviations from the mean expressed in any chosen (n-1) time differences.

Because we require position in degrees of arc, it is necessary to

convert the observed time differences (or alternatively the station-minus-

mean time differences) to angular measure. This is done by dividing the

observed values in wavelengths by the factor

naf

180v

where

a = equatorial radius of the earth

f = frequency

and

v = velocity of propagation.

To refer this process to the ordinary Omega charts and tables where

frequency is taken as 10. Z kHz, this factor may be taken as

10200 Ta c 3. 8222 ± 0. 0013 Wavelengths/degree (57)
180 c v

where c is the velocity of light

and c/v is the relative time of transit of a signal, referred to an

hypothetical signal traversing the geodesic at. the velocity of light. The



writer's nominal values of c/v for the 3. 4 kHz difference frequency,

which is preferred for reasons of reduced ambiguity, are 1. 0088 at night

and 1. 0095 in the daytime, or a mean (used above) of 1. 00915. *

With these conversions, the iterative process proceeds as follows.

The number of stations is immaterial (so far as the mathematics is

concerned) but it will often be taken as three (A, B, C) because of interesting

limitations when using a triplet. These will be discussed below.

(1) Compute the observed quantities (A - mean), etc., for each

station of a group that is supposed (from prior knowledge or from signal-

to-noise ratios, for example) to surround the unknown position. These

quantities are hereafter called Tobs although they are now in angular

measure.

(2) Assume a starting point near the center of the group of stations.

An obvious choice is that point from which the stations uniformly divide the

azimuth range (that is, are 1200 apart for a triplet) where the mean

distance is a minimum. For reasons somewhat hard to explain, the

*The discussion hereafter will neglect an important point. If the required
accuracy demands the correction of diurnal variation at 3. 4 kHz, the
relative amount of day and night along each transmission path (from which
the relative velocity can be interpolated) cannot be known until the receiving
position is known at least approxirrately. It is therefore necessary to
carry the iterative process far . agh to give the position with an error of
only tens of miles, and then to readjust the "constant" of Eq. (57) separate-
ly for each transmission path before completing the final iterations.
Alternatively, the iteration may be carried to its normal conclusion and
the determined position can then be corrected for the velocities of
propagation appropriate to the time of day. This is not difficult, as the
distances and azimuths of the stations are available after the final iteration.
If this adjustment is to be made in terms of the Oceanographic Office's "Sky
Wave Corrections, 1 it will simplify the work if the standard Omega
relative chart velocity of 0. 9974 is used in Eq. (57).

J
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writer tends to prefer the point at which (for the triplet) all stations are

equidistant. The distinction is not a matter of much importance. Any

group of stations has, presumably, a best starting point (when there is

no prior knowledge) and it should be determined and used as standard

procedure. Of course if there is prior knowledge that can reduce the

distance between the starting point and the true position, this knowledge

should be used, as the required number of iterations depends upon the

magnitude of this distance.

(3) Calculate the distances of the various stations from the starting

point. The writer prefers to use the Andoyer-Lambert2 1 ) 2 2 correction

for the oblateness of the earth in geographic coordinates, as this seems

to be sufficiently accurate for Omega purposes and avoids the conversion

into and out of geocentric or parametric latitude. A convenient notation is

T = a a + 6s (58)

where

T distance

a equatorial radius of the earth

[-* A angular distance in radians

6s =a small correction for oblateness

This is solved in parts by saying

cos (- S + C cos (k T -P) (59)

where

LJ
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S = sin 6T sin o

C = Cos ¢T Cos 0 P

and

= latitude of transmitter

OP = latitude of assumed point

x T = longitude of transmitter

xP = longitude of assumed point

and

a-b [3 sin -o[ 2 3 sino-+o- [(I 2 C2 6

8s= -4- 1 + Cos [(+S)- - lCos a- (60)

where

b polar radius of the earth.

(4) Calculate the azimuths of the various stations from the assumed

point. Since the azimuth is used only to factor the deduced angular

corrections into latitude and longitude components, it is not necessary to

use the Andoyer-Lambert correction to the directions. The azimuth on a

sphere is accurate enough (unless the latitude is low and the difference in

longitude happens to be very nearly 1800, which is not in the useful domain

for Omega). The quadrantal ambiguities in the azimuth are most easily

resolved by using the cosine formula

-1 sinCT -sinCP cos-

Azimuth = A cos T (61)
cos Cp sin o-

IP

-_ -A
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{

and giving the resulting angle the algebraic sign of (XT - X * With East

longitude and angular distance from the station taken as positive, this

gives azimuth in the ordinary sense.

(5) Average the distances from the various transmitters and form

the deviation AT for each transmitter as

AT = T - mean T - Tob s  (62)

where AT, T (step 3), and Tobs (step 1) are computed separately for

each station. Tob s is used here in the negative sense because we are

calculating a correction toward a station rather than distance from it.

(6) Components of AT for each station are formed by taking

AO = AT cos e (63)

and

A% = AT sin e/cos CP (64)

where AO and A% are corrections to the starting-point latitude and
M/

longitude, respectively.

It is obvious that, cn a nearly spherical earth, this projection will

have a large error if AT is large unless either e or p is zero. A

more accurate spherical projection can be made, but it nearly doubles the

whole computational complexity of each iteration and is unimportant when

AT diminishes as the true position is approached. It therefore seems

(T XP) must, of course be taken as less than 1800.

T P

" J
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better to use an easy and approximate projection and to allow the iterative

process to carry the load. At high latitudes, of course, these errors of

projection are especially severe and generally require a reduction of the

"gain" of the calculation, which will be discussed below.

(7) The n latitude and n longitude corrections for n stations are

then averaged, multiplied by a gain factor G, and added to the coordinates

of the starting point to give the coordinates of the point from which the

next iteration proceeds. That is

+j+l G O (65)

and

.+ = X + G ZT. (66)j J

where j is the iteration number.

(8) The newly-derived approximate position resulting from Eq. (65)

and Eq. (66) is now used as a new starting point and the iteration process

goes back to repeat steps 3 through 8. Step I is unchanged because it

contains the observed time differences at the true position, and step Z no

longer applies.

(9) The iteration is terminated when all values of AT have fallen

below a level representing propagational uncertainty, or when their root-

mean-square value stops changing, as discussed below.

The number of iterations required depends upon a number of factors:

the divergence and crossing angles of hyperbolae, of course, the distance
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from the starting point to the true position, the latitude, the final precision

required and the "gain" used in the computation. This is a subject we

have explored only by trying a number of examples that appeared interesting.

As a grand average, it seems that the distance from each assumed position

to tile true one is approximately halved at each iteration.

Each set of iterations should proceed until each value of A0 and AX,

or perhaps more conveniently the rms value of AT, is smaller than the

expected propagational error. This level might be established near

00 . 004, or about 1/4 nautical mile.

We have once or twice mentioned the "gain" of the computation and

must admit that we can define the best value only approximately. We have

used the gain G as a multiplier for the mean correction for both latitude

and longitude. Since A¢ and ,AX are the means of n values for n

stations, it would presumably cause oscillatory behavior to use a G as

large as n, which must be at least 3. This is usually but not always the

case. On the other hand, because we are splitting the deviation AT (for

each station) into orthogonal components, it seems reasonable that G might

be as large as the square root of two.

Figure 40 gives an example (shown for latitude only) of the variations

in behavior resulting from changes in the gain of the computation. In this

instance, gain 2 gives nearly critical damping, but in other cases gain 2 is

found to be oscillatory. An example of this is shown in rig. 41 which

exhibits the loci of iteration from several starting points toward Cambridge.

Two or three features of this diagram are important: the greater tendency

to overshoot at the higher latitudes, the indications of more nearly critical

damping as the true position is approached (or as the number of iterations
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increases), and the very slow approach for part of the path from the point

at 0°N, 0 W. This last feature must be reserved for later discussion.

It is evident that at high latitudes a lower gain is advisable because

we must take AX as proportional to the secant of latitude. Thus errors

in the projection of longitude are magnified. In fact, the whole process of

solving for latitude and longitude degenerates into a zero-divided-by-zero

situation at the pole itself. The self-stabilizing feature seems to be because

after a number of iterations the deviations of the various station components

come into a kind of coherence that makes a higher gain more tolerable for

the later iterations.

A limited number of trials seems to indicate that if one must have a

single optimum value for G it may be near 1. 7. A variable model that

has behaved well in a number of circumstances is

G = (1.2 + logl 0 j) cos I /4OP (67)

where j is the iteration number. The functions in this definition have no

justification except that they give a suitable increase in G as the iteration

proceeds and a modest decrease in the polar regions. This choice of G

seems to reach a solution in as small a number of iterations as any other

choice, while allowing the locus of iteration to be reasonably smooth and

direct.

The writer has come to prefer a sort of "automatic gain control" that

appears to have similar properties. This function may be rationalized by

noting that the root-mean-square value of AT in Eq. (62) is a rough

measure of the distance from the assumed position to the true position.

For the first iteration, when the initial assumption is taken as the point

im
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equidistant from the transmitters, the ratio between distance and rms AT

averages about 1. 5. The sum of the squares of Z¢ and AX cos 0P is, of

course, the "distance made good" in each iteration and this distanace is

generally toward the true position. If we then take G as RMS AT/RSS A-,

AX (leaving out the function cos 0 mentioned above) we have a gain

factor which seems to have the general properties of Eq. (67), although

the reduction in gain in the polar regions is more extreme for the

automatic gain.

The reasons why the automatic gain is advantageous can be explained

in terms of Fig. 4Z. This diagram shows the baselines and baseline

extensions of a triplet of stations, A, B, C.2  The region between each

pair of contiguous baseline extensions is shaded. It is a feature of the

iterative calculation that it cannot proceed from a starting point in an

unshaded area to a true fix that is in a shaded area. It will instead converge

on a false position that must be in an unshaded area. There are two facts

that explain this behavior. A pair of hyperbolae on a sphere (when not

confocal) have two intersections. Each hyperbola does not extend to

infinity, as on a plane, but forms a continuous closed figure. In the case

of hyperbolae that intersect well away from the foci, as do those marked

AB-0. 20 and BC+0. 30 in Fig. 4Z, the other intersection will clearly be

around on the other side of the sphere. As shown by the two intersections

of the hyperbolae marked AB+0. 95 and BC-0. 97, however, a true fix

near a vertex may have a false fix not too far away.

Any network of stations on a sphere has a geometrical image on the

opposite side of the sphere, where the locations are obtained by projecting

the position of each station through the center of the sphere. The angular

-J
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distance from any point to the image of a station is 1800 minus the distance

from the point to the station. It follows that if the iteration in a triplet of

stations proceeds to a false fix a second calculation can be performed,
with the algebraic signs of all values of Tobs reversed. This second

icalculation wil proceed to the antipode of the true fix. It is therefore

possible, when there are four or more useful stations, to complete the

iterations twice for each of two or more different triplets of stations, one

direct and one reversed in each case. Half of the final positions found will

agree or be antipodal, while the other half will scatter widely.

The second important point mentioned above is the inability of the

three-station iteration to cross a baseline extension. This is because the

positional information resides in the angle subtended by the transmitters

as seen from the "navigator's" position. At any point on, say, the AB

baseline extension either A or B can be used with station G to determine a I

line of position, but there can be no two-dimensional fix.

The behavior of the locus of iteration from 00N, 00 W in Fig. 41 is

explained by this feature. It happens that both the starting point and the

terminus at Cambridge lie in the "unshaded" area for the triplet of stations

'-4 used, while the original direction of the locus brings it close to the baseline

extension of the Trinidad-Hawaii pair, which is roughly indicated by the

dotted line. In this region near a baseline extension the distance made good

in each iteration is greatly reduced. The locus does, however, sheer away

from this obstacle and ultimately find its way to Cambridge.

This effective loss of gain near a baseline extension is a primary

reason for preferring the "automatic gain control" described above. If

the yield of an iteration (the magnitude of A and )is relatively small

-J
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the gain increases so that the distance actually covered by the iteration is

kept more nearly proportional to RMS AT . In the case of Fig. 41, it

would have been too confusing to have included a second locus of iteration

from 0°N1 0 0 W. This second iteration with the "AGC" can be described,

however. It is more erratic in the early iterations, but closer to Cambridge

after 8 iterations than is the locus shown after 16.

The terms "true" and "false" in Fig. 42 are not determined by the

arithmetic. There are simply two alternative intersections of a given pair

of hyperbolae. In an Omega sense, however, the identifications may stand

as shown, because a series of iterations in the ABC triplet should begin

near the center of the ABC spherical triangle u~iless prior knowledge is

available so that one can begin nearer to the true position.

Examples of the loci of three-station iterations in northern North

America are shown in Fig. 43. The computations were made with the

automatic gain and the loci are seen to be generally smoother than those of

Fig. 41. The iterations all proceed from the point from which the three

stations are equally distant. The points reached at each of the first few

iterations are marked. The number adjacent to each target point is the

number of iterations required to reduce the error of the calculation to less

than 1/4 nautical mile.

The line in Fig. 43 starting toward Copenhagen indicates a rather

unnecessary experiment in iterating over a long distance toward a point

that is just barely on the "true" side of the Hawaii-Norway baseline. The

calculation is successful but only after a very large number of iterations,

partly because the progress across the arctic is slow but chiefly because at

the far end each step traverses only a very small fraction of the remaining

4 MRS
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distance. The locus passes just west of Bergen, Norway, between the

tenth and eleventh iterations but then requires a hundred more iterations to

cover the last 380 miles.

This difficulty in the baseline extension regions (with the associated

true and false fixes) characterizes only the three-station solution. When

four or more stations provide useful signals it is (given the Omega station

geometry) impossible to be at a position where two-dimensional information

is not available. Conveniently, the computational rules are exactly the

same no matter how many stations are used. * Several examples of loci in

the Atlantic area using the four named stations are shown in Fig. 44. Here,

as in Fig. 43, the number of iterations to reduce the computational error

to 1/4 nautical mile is given near each finz.1 point. Of especial interest in

this figure is the calculation toward the point near St. Helena (about 140. 7

S.$ 150 W. ) which was carefully located to be exactly on the baseline

extension of the Norway-Liberia pair. The requirement for 28 iterations

shows that there was a decrease in the I power ' I of the later iterations, but

the calculation came to a successful solution.

One other subject requires discussion. If there is some lingering

doubt of the absolute accuracy of the total cycle count, we are in an un-

fortunate position with the 3-station iteration process. If, say, the distance

from one station only is erroneously taken to be one 3.4 kHz wavelength

(300 Cecs of 10. 2 kHz or approximately 48 nautical miles) too large, the

iteration process will lead to a position at least 24 miles from the true

*It should be noted that, with weights for the various stations assigned in
terms of signal-to-noise ratio and related in a non-linear way to distance
and direction, this multiple-station iteration forms one approach to the
interesting problem of attaining the best possible solution for position,
using all data from all Omega stations.
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position in a direction generally further from the offending station. This is

because there is in fact a position at which the three distances have the

erroneously-observed differences.

If four stations are available, they can be examined in groups of

three in four different ways. Unfortunately this process, with a single

error in distance, will lead to four well-separated positions, only one of

which is correct.

The direct four-station solution as in Fig. 44, offers one distinct

advantage besides its relative simplicity and the absence of false fixes.

Because there is no real point at which the 4-station differences can be

what they appear to be (on the assumption of an error in a single distance)

the root-mean-square value of AT will, with increasing iterations, reach

a reasonably constant value corresponding roughly to a quarter-period.

This is equivalent to about 00. 2 of arc, or about 12 nautical miles in

distance. As this magnitude is about ten times* the normal propagationally-

determined uncertainty of the measurements, it should be reliably

conspicuous. The effect is that seen in Fig. 45, where the errorless

computation continues until the rms value of AT decreases to the

propagational I"noise" level of 00. 01 or 00. 02 (not shown in the figure)

while the computations with one error saturate at a higher level olZ AT, in

thJ.s case after five iterations.

As shown in the upper part of Fig. 45, the automati gain rises to a

high and fluctuating level when this plateau in rms AT is r ached. This

*This assumes that the calculation is carried out at 3. 4 klHz. At 10. 2 to
13. 6 kHz, the margin in magnitude is reduced by a factor of hree or
four.
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feature may be found useful, .but it does not appear to the writer to be as

good an indicator of error as is the value of rms AT itself. It is, however,

a reminder that the solution will be found to be oscillatory in this high-gain

region.

With a rather large amount of computation it is conceivable that an

error in a single station distance could be identified and corrected. The

argument is as follows. If four separate three-station solutions* show an

rms scatter of about one 3. 4 kItz wavelength/2A2 (say 15 miles, more or

less) in either latitude or longitude, or both, it may be taken as an

indication of a one-wavelength error in a single distance. Then, if no

less than twelve four-station computations should be performed (with each

station distance taken individually as observed (1), or as one wavelength

greater (2), or as one wavelength less (3) than the observed value) one of

these twelve resulting positions should coincide with one of the four three-

station positions. Whether this method should be attempted must depend

upon the experimental reliability of ambiguity resolution. This is because,

at leasi. under some circumstances (such as at the center of a perfect

quadrilateral, with one distance measured as too large and the diagonally-

opposite distance as too small), there can be two cooperating errors that

cannot be detected. Much depends, then, upon the results of experiment.

If it can be dmonstrated that single errors occur occasionally while errors

in more than one path at a time are extremely rare, these suggestions may

become useful.

*It probably ought to be pointed out that a later secondary computation should
start at the terminus of an earlier computation. It will then either agree
immediately or reach its own terminus after only a few iterations.
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We must summari,;e these confusing statements by saying that it is

possible to feel reasonable confidence in a determination of position if

(a) the deviations of the observed phases from expectations in the cycle-
k

identifying process are satisfactorily small, and if (b) the four-station

solution for position proceeds to a level of rms AT that is commensurate

Nwith propagational experience, Equal or greater confidence may be felt if

a four-station solution and a three-station solution (using any three of the

four stations) are both carried out, with final positions that agree except

for propagational uncertainty.

It should be obvious that, whatever lane-identification errors or

propagational deviations are involved, the magnitude at which (for four or

more stations) RMS AT limits is a measure of the error of a deduced

position. This may be one of the happiest results of the iteration technique

because, in general, Omega readings do not automatically yield a measure

of current accuracy.

With five available stations, which should generally be the case in

Omega, these same principles should lead to correction of even double

lane-identification errors, although the number of computations required

would be very large. A study of this kind should certainly go forward, and

it seems reasonable that further study of the three- and four-station

solutions should be carried out in the hope that there may be better

techniques than those the writer has used, or that there may be neglected

clues in the results of the iteration process that would allow better

assurance of the absence of errors.

The importance of this suggested work will, of course, depend upon

the results of lane-identification experiments that have not yet been made.
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If these should be as successful as the writer hopes, it will follow that

adequate confidence can be felt in a solution for position that uses no more

than the results already available in this study.

19. SUMMARY

Suggestions have been made in this report for improving the utility of

Omega by:

1. Reduction of errors of observation,

2. Reduction of errors of prediction,

3. Improvement of the reliability of lane identification,

4. Extension of the range of lane identification to cover the world,

and

5. Determination of latitude and longitude from Omega observations,

without the requirement of any prior knowledge of position.

-4!
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APPENDIX

REVISION OF NOMINAL VALUES OF c/v

This paper has treated the nominal predictions, introduced in

Sections 4 and 9, as though they were more absolute then one can expect

them to be. This uncertainty is particularly critical at the intersection of

the day and night nominal reciprocal velocities at m 1= 3. 263 and

c/v = 1. 00725, because this point is used to stabilize the predictions at

3.4 kHz, and for similar purposes.

This nominal point at which the mean diurnal variation is presumed

to be zero must, of course, vary in both m 1 and c/v with at least some

of the variables listed in Section 9. Of these, latitude may be the most

important, although the writer has too few data at hand to permit the

quotation of any suggested coefficient. The general subject of the migration

of this "fixed" point must be left to others to investigate.

It will probably be advisable for other workers first to examine the

question of whether the writer has located this "fixed" point in the correct

average place. As Figs. 5 and 6 show, the chosen point agrees quite well

with data taken in Cambridge and, as seen in Table II, there is general

agreement with independent estimates of phase velocity and with some data

taken by others.

This agreement notwithstanding, the writer has become conscious, in

the last year or two, that some samples of data taken in other parts of the

world seem to imply a somewhat higher group velocity than do the

Cambridge data. In response to this nagging impression, a revised set of

nominal velocities has been selected that secm, in general, to fit data taken
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4

at other places rather better than do the values cited in this paper,

although the agreement at Cambridge is somewhat less satisfactory. The

distinction is not of very great importance. The maximum difference

between the old and the revised nominal values occurs at night at 3.4 kHz,

where the difference in predicted transmission time is about 2 centicycles

of 10. 2 kHz per megameter of distance. Since the average distance-

difference in the operational Omega system is not likely to be much more

than 3 Mm, this modification amounts to less than a mile average dis-

placement of the 3. 4 kHz predictions.

The importance of this suggestion of revised nominal values should

be regarded as very tentative. The revised values differ from those in the

body of this paper, but are not necessarily better. The magnitude of the

changes is perhaps only a measure of the uncertainty of the coordinates.

On the new basis, these would be m1 = 3. 2, c/v = 1. 0066.

With these doubts in mind, the writer ha. chosen to keep the relations

cited in this paper consistently on the old basis, and to suggest modification

only in this appendix. The modified nominal predictions affect values in

this paper chiefly in Table II (C) and in several of the equations in Section 12.

Revised values, with the same table and equation numbers, are as

follows.

Equations in Section 12:

T3.4 nom = (1. 0090 - 0.0008 F) TG (38A)

1. 0066 TG - T C - (S. W. C. )i 0.2S (39A)

3.2

U
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TABLE hA

REVISED ESTIMATES OF RECIPROCAL VELOCITY

c/v2  c/v1

13.6 kHz 10. 2 kHz clv - cl m c/v at m

(C) Revised Nominal:

Night 1. 0022 1.0002 0.0020

Day 1.0000 0.9970 0.0030

Night-Day 0.0022 0.0032 3.20 1.0066

S = 0. 002875 TC + 0. 3125 (S.W.C.)1 0 2  (41A)

T = (1 + 0. 002875 m) TC - (I - 0. 3125 m) (S. W. C. 1I0.2 (43A)

T1.0115 TC+0.Z5 (S.W.C.)I 0 2  (44A)

Modified (S.W. C. )3.4 = - 0.0115 TC - 0.25 (S. W. C.)0. 2 (45A)

It is left to others to determine the best values for the nominal

predictions, and, of course, the general utility of these methods.
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